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Overview

• Context of source detection

• Challenges in background variation 

and assumption of a training set

• Proposed solution of adaptive 

background estimation

• Experiments to compare proposed 

solution to alternatives
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Radiation Threats in Spectral Data

• Our purpose is to detect compact 
sources of potentially harmful 
radiation in the presence of 
background noise.

• We analyze individual gamma-ray 
spectrometer measurements from 
a mobile sensor, some of which 
may reflect presence of the 
sources sought.

• A significant challenge is to filter 
the source from the background, 
as the signal-to-noise ratio is low.
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Existing Methods Use Stationary Representations

• Some methods are based on 
principal components such as 
Spectral Anomaly Detection and 
Matched Filter.

• Other methods may be based on the 
mean background spectrum such as 
Gaussian-Poisson MAP Estimation.

• In general, most methods utilize a 
stationary representation of 
background extracted from a training 
set of background.
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Challenge 1: Variation in Background

• The background spectrum depends 
on many factors such as materials 
and atmosphere.

• Therefore, the background may be a 
non-stationary process that varies 
temporally and spatially.

• By reducing background to a 
stationary representation, most 
methods ignore the sequential nature 
of the data and are thus insensitive 
to local variations.

Copyright © 2017 CMU Auton Lab 6



Challenge 2: Informative Training Data

• The assumption of informative training data may not be safe.

• Background characteristics at deployment could differ from when 

the data were recorded. At worst, data might be totally 

uninformative. 

• There might not even be training data from the location being 

checked. If so, the methods probably cannot be trained 

satisfactorily.

• When the training data are less informative, the performance of 

many methods can suffer drastically.
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Proposed Solution: Adaptive Estimation of Background

• Both challenges can be solved by estimating the local background 

in real-time during deployment.

• The estimated background can then be given as input to other 

methods, which makes them

• (+) More sensitive to background variation.

• (+) Feasible when no informative training data exist.

• (-) Less robust to noise because of fewer data points.

• The primary obstacle is that if a source exists, its radiation might 

get mixed in with background by an estimator.
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Kalman Filter for Linear Dynamical Systems

• The Kalman Filter (KF) estimates an unobserved process 𝑥𝑡 given an 

observed process 𝑦𝑡 by filtering out stochastic noise.

• A linear dynamical system is assumed where

𝑥𝑡+1 = 𝐴𝑥𝑡 +𝑤𝑡

𝑦𝑡 = 𝐶𝑥𝑡 + 𝑣𝑡
• KF recursively estimates a Bayesian prior mean and covariance on state 𝑥𝑡.

• If noise terms 𝑤𝑡 and 𝑣𝑡 are normally distributed and uncorrelated, then KF is 

the linear minimum mean-squared error estimator.

• Hyperparameters to be set are 𝐴, 𝐶, 𝐶𝑜𝑣 𝑤𝑡 , 𝐶𝑜𝑣(𝑣𝑡), and mean and 

covariance of the initial prior. 
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Simultaneous Estimation of Source Intensity and 

Background
• Let the state 𝑥𝑡 be the multivariate background 

spectrum Poisson rates 𝜆𝑡 appended by source 
intensity 𝛾𝑡.

• Let 𝑦𝑡 be the observed counts. 

• Transition model: no change a priori.

𝑥𝑡+1 = 𝑥𝑡 +𝑤𝑡

• Assumption: The source template 𝑠 is known.

• Emission model: sum of background and 
source.

𝑦𝑡 = 𝜆𝑡 + 𝛾𝑡 𝑠 + 𝑣𝑡
• Noise is not Gaussian, but if rates are high, 

Poisson approximates Gaussian.
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Adaptive Filtering to Set Up Kalman Filter

• KF is very sensitive to the hyperparameters 𝐶𝑜𝑣 𝑤𝑡 and 𝐶𝑜𝑣(𝑣𝑡).

• An adaptive KF assumes they are non-stationary and estimates them in real-
time.
• Bayesian, MLE, covariance matching, correlation

• Often computationally expensive

• We propose a simple method that functions well for this problem.

𝐶𝑜𝑣 𝜆𝑡 = 𝐾𝐿,𝜎( ෢𝐶𝑜𝑣 ො𝑥𝑖 − ො𝑥𝑖−1 )

𝐶𝑜𝑣 𝛾𝑡 = 𝛾0
𝐶𝑜𝑣 𝑣𝑡 = 𝑑𝑖𝑎𝑔(ො𝑥𝑡−1)

where 𝐾𝐿,𝜎 is a Gaussian filter with length 𝐿 and variance 𝜎2

• Disadvantage 1: Introduces additional uncertainty.

• Disadvantage 2: Requires a short burn-in period (𝐵 < 120 measurements).
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Making Predictions from the Kalman Filter

• The first approach is to insert background estimates 𝑥𝑡 into non-sequential 

methods.

• For example, Gaussian-Poisson (GP) MAP estimation takes mean background and 

background covariance as stationary input.

• GP: Compute MAP likelihood ratio of source versus no source using a Gaussian prior over 

the Poisson rates. 

• GP can be made locally adaptive by inserting ො𝑥𝑡 as the prior mean 𝜇 and sample covariance 
෢𝐶𝑜𝑣( ෝ𝑥𝑡) as prior covariance Σ, which are both inputs.

• The second approach is to use the intensity estimates 𝛾𝑡 as a score.
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Dataset and Experimental Design

• The dataset was a collection of 11,000 gamma-ray measurements recorded in 
one-second intervals by a NaI detector on a vehicle moving around downtown 
Berkeley, CA.
• Photons were partitioned into 116 quadratically spaced energy bins.

• Contained about 10,000 counts per second on average.

• The original measurements were taken as background. A generative model 
was fitted to the background so that background counts were resampled in 
each trial.

• Synthetic positive measurements were created by injecting Poisson samples 
from a source template for Americium-241, a nuclear waste isotope.

• The experiment tested detection of a roadside source in a single pass. In each 
trial, the source location was randomized. 

• Half the trials did not include a source.
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Evaluating the Kalman Filter with Training-Test Mismatch

• The Kalman filter does not require training data, but 
other methods usually do.

• It may be naïve to assume that training data match test 
data.

• To induce mismatch between training and test 
background, test spectra were shifted to higher energy 
bins, similar to an extreme form of gain drift.

• We compared several methods:
• Oracle: Likelihood ratio using exact background rates and 

intensity.

• Optimal GP: GP with perfect prior.

• Kalman GP (KGP): GP with prior set by KF.

• Moving Average GP (MA GP): Like KGP but with simple 
moving average.

• GP: GP method with prior set by training data.

• Naïve KGP: KGP with non-adaptive covariance 
hyperparameters estimated from training data.

• Intensity: Intensity estimated by KF.
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Adaptive Approaches Perform Better

• Oracle and Optimal GP give upper bounds on performance of realistic methods.

• Proposed methods KF Intensity and KGP are significantly better than every alternative except Oracle and 
Optimal GP.

• In low FPR ranges at 125 counts per second, KF Intensity TPR can be 0.5 higher than the next best.

• Plain GP does not adapt to local variations in background.

• MA GP does not separate source and background.

• Naïve KGP demonstrates the importance of adaptive filtering.
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Examining Estimated Intensity and Scores

• Estimates of intensity were compared to the true intensity, which spiked when the detector 
moved near the source.

• Intensity and KGP scores tracked the true intensity well with low lag.

• There were not large spikes when there was no source. 
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Conclusion

• The main contribution was to propose a method for source detection that 
greatly reduces the dependence on a training set, which can be useful when:
• A training set is not available for a new location.

• Background has shifted over time.

• The background has heavy local variation.

• The training set is inaccurate because of miscalibration, e.g. gain drift.

• We modeled radiation as a linear dynamical system and applied a Kalman 
filter to simultaneously estimate source intensity and background.

• The method was demonstrated to perform well when the training set was 
uninformative on a modified RadMAP dataset.

• Future work includes investigating how the method performs on a dataset with 
naturally high background variation, and how the Kalman filter can be inserted 
into other methods such as the Matched Filter.
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