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Introduction. In nuclear physics, an important problem is the detection of radiation threats. We consider a mobile
detector used for search, such as a vehicle that travels through an urban environment to locate dangerous radioactive
materials. The primary challenge is a low signal-to-noise ratio in observed radiation caused by background radiation.
Urban environments contain large numbers of nuisance (benign) sources—potentially every material present—which
can heavily obfuscate the signal from the target source. These nuisance sources may include ordinary objects
like concrete or bananas as well as shielding materials that intentionally hide the source. Moreover, since the
environment changes as the detector moves, the background radiation fluctuates widely, further compounding this
problem.

This work explores detection of a compact source in a single pass of the detector. Existing methods for this
problem commonly assume that a training set of background radiation measurements is given and that the average
spectrum of background radiation is the same between the training set and test set. Relaxing these assumptions,
we investigate a scenario in which a discrepancy exists between background radiation in training and test sets or in
which there is no training set at all. There are multiple practical situations in which this a scenario could arise,
such as different environments for training and testing, environments with non-stationary background, a lack of
time to collect training data for new sensors, and gain drift. A new method is proposed that is robust to these
situations by adapting to the local distribution of background radiation in real-time. In particular, a Kalman filter
is employed to simultaneously estimate source intensity and background. It is demonstrated to greatly advance the
state-of-the-art when the training set is uninformative, using an authentic radiation dataset collected in a noisy
urban environment.

Objective. We introduce a method for detection of a single source in the presence of background noise that is
robust to uninformative or unavailable background training data.

Background. There are many existing methods for source detection, and in this work we focus on those that
assume knowledge of a source template. One class of state-of-the-art methods are Matched Filters [1], which
essentially compute the similarity between a source template and the part of observed radiation that is not expected
from background. Another recent development is Gaussian-Poisson MAP estimation [2], a Bayesian method that
computes a likelihood ratio between the hypotheses of source and no source by modeling radiation as Poisson
variates under a Gaussian prior. These methods are trained on background radiation observations, which are
implicitly assumed to be similar to the observations at test time. After training, they can be given new radiation
observations for which they output a score according to how likely a source is present.

Method. In the Gaussian-Poisson (GP) method, the Gaussian prior on the background rates has a time-invariant
mean and covariance. The method can be improved by dynamically estimating the background rates at each step
to better estimate the parameters of the prior. To do so we apply the Kalman filter, a widely used method for
estimating an unobserved signal underlying an observed noisy discrete time series. In plain terms, it filters out
statistical noise to obtain more precise estimates of a signal. Consequently, it is a natural candidate to model
radiation. The state space xt ∈ Rd+1 contains the background rates in each of d energy bins in the first d elements.
Furthermore, the source intensity must be modeled in order to decouple its effect on the measured spectra from the
background radiation. Source intensity can vary with distance and obfuscation. Accordingly, we model source

intensity in the last element x
(d+1)
t . Next, the observation yt ∈ Rd contains the measured counts at time t. We

propose a dynamical system given by xt+1 = xt +wt and yt = x
(1:d)
t +x

(d+1)
t s+ vt where s ∈ Rd is the target source

template. Given y1, . . . , 1t, the Kalman filter estimates the background rates x
(1:d)
t , which are used as the mean µ

of the Gaussian prior in the GP method. In addition, the covariance of the prior is estimated as the covariance of
the estimated background rates up to time t. The covariances of wt and vt are estimated adaptively by a simple
method, omitted here for brevity.

Data and procedure. Our experiment tested detection of a roadside source in a single pass. The dataset was a
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collection of over 11,000 gamma-ray measurements recorded in one-second intervals by a sodium-iodide detector
mounted on a vehicle moving around an urban area in downtown Berkeley, CA, USA. On average there were
10,000 photon counts per second. Each measurement contained d = 116 quadratically spaced energy bins. The
measurements were assumed to be background data. The background rates were estimated by applying the GP
method over observations within 10 meters of the current measurement being estimated. These were regarded as
the true rates for simulation and comparison purposes.

To create positive measurements, we selected a single threat template with a Pearson correlation of only 7%
with the mean background. A location for the source was randomly sampled from the set of points at most 20
meters from the path of the sensor. The test set was taken to include all data points where the sensor was at
most 100 meters away from the source, along with all data points in between, forming a contiguous window. The
training set was taken to be the remaining data points. To simulate different distributions between the training and
test sets, we applied a shifting algorithm to each measurement in the training set. The counts in any particular
energy bin were shifted to higher energy bins. This shift induced a Pearson correlation of roughly 50% between
the mean training background spectrum and the test background spectra. Every observation in the test set was
injected with a sample from the source distribution with intensity based on distance. The maximum intensity was
set to a given value. Then the methods were applied to score each test point. The maximum score for each method
was recorded as the output of the run. Next, all runs were repeated identically except with no source injection. By
this procedure we created multiple runs with positive or negative ground truth.
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Receiver operating characteristics of different methods.

Results. [Currently running fresh experiments to com-
pare to MF.] We compared performance between six
methods. The figure shows the ROCs computed over
XXX positive and negative runs with maximum inten-
sity of 125 counts per second. The best methods are
Oracle and Optimal GP, which leverage information
not realistically available and are hence expected to
perform better. The next best is our proposed method,
KGP, which beats a variant of GP called MA GP by a
large margin in the low false positive rate range: about
20% in true positive rate and 5% in false positive rate.
Standard GP and Matched Filter (MF) do poorly.

Conclusion. We characterized photon counts distribu-
tions in gamma-ray spectra using a Kalman filter and
Gaussian-Poisson model to adaptively predict source
presence. This approach produced a classifier that when
tested on an authentic radiation dataset was substan-
tially more sensitive and threat-specific than other methods when the training set of background radiation was
uninformative. This work advances the state-of-the-art in a variety of practical use cases, such as such as different
environments for training and testing, environments with non-stationary background, a lack of time to collect
training data for new sensors, and gain drift.
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