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Abstract

One interesting question in medicine asks whether the presence of bleeding is
correlated with central venous pressure (CVP), which is often used as a signal in
practice. Although several authors argue that CVP is useless because it is noisy,
the question of filtering noise is separate from the question of CVP’s intrinsic
utility. In this study we consider a dataset recorded in a controlled setting to reduce
noise. The main contribution of this work is to demonstrate that these clean CVP
waveforms can help predict bleeding. In particular, bleeding has a relationship with
correlation structures between waveforms during inspiration and expiration phases
of the respiratory cycle. We employ a multi-view correlation clustering method
called CLS clustering that learns mixtures of local correlation structures to classify
sets of waveforms as bleeding or not bleeding, with fair empirical performance.
Clusters represent clinical phenotypes, and the relationship between inspiration
and expiration can be expressed in terms of the original CVP waveforms.

1 Introduction

An area of interest in medicine is the detection of internal bleeding. One interesting question is
whether the presence of bleeding is correlated with central venous pressure (CVP), the blood pressure
in a region near the right atrium of the heart. Several authors argue that there is no empirical evidence
that CVP has any clinical utility even though it is often used in practice (Marik and Cavallazzi, 2013).
A commonly cited reason is that CVP is highly sensitive to shifts in body position, making it too
noisy. However, the question of whether CVP is connected to bleeding is separate from the challenge
of filtering out this noise. In this work we investigate CVP within a controlled setting that restricts
this noise. To aid scientific discovery, we explore a method that reveals explainable structure in the
data. We consider a recent classification method that learns a clustering of local linear relationships
between two views in the data (Lei et al., 2017), and we apply it to the task of bleeding detection. In
the dataset used by this study, the two views correspond to CVP waveforms during inspiration and
expiration phases of the respiratory cycle.

The chosen method finds clusters of correlation structures between two multivariate views of the data.
This approach is useful when different correlation structures appear in different subsets of the data and
when nonlinear correlations may be present. Inspired by Canonical Correlation Analysis (Hotelling,
1936), the method is called Canonical Least Squares (CLS) clustering; CLS clusters can be considered
shared factor models between the first and second views (Lei et al., 2017). The method supports must-
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link constraints between data points, which are utilized in this study to guarantee that observations
from the same patient appear in the same cluster. Clusters can be interpreted as clinical phenotypes
characterizing patients’ pre-bleeding or post-bleeding responses. This study utilizes CLS clustering
as a supervised classification algorithm by incorporating labels on bleeding status. The result is a
method with fair classification performance with interpretable structure.

2 Related work

There has been substantial past work on multi-view clustering. However, many authors, such
as Livescu and Stoehr (2009) and Bruno and Marchand-Maillet (2009), work with multi-modal data
such as audio-visual data; clinical data is less common. Furthermore, a large body of literature has
been published on the clinical utility of CVP in practice. Most studies appear to post negative results,
such as Michard and Teboul (2000), Pinsky and Payen (2005), and Kumar et al. (2004); some studies
claim positive results, such as Damman et al. (2009) and Boyd et al. (2011). However, less work has
been published on investigating CVP in a controlled, noiseless setting.

3 Canonical correlation analysis

CCA is a method for understanding cross-covariance between two sets of variables (Hotelling, 1936).
For example, if one set is genes and the other is diseases, then CCA might connect combinations
of genes with certain diseases, potentially corresponding to physiological traits. Formally, it finds
maximally correlated linear combinations of each set. Let x ∈ Rd1 and y ∈ Rd2 be random vectors.
CCA solves the problem maxu,v Corr(x

Tu, yTv). The solution is well-understood (Hardoon et al.,
2004) as the solution to an eigenvalue problem involving covariance matrices. Subsequent linear
combinations can be found under the constraint that the previous components xTu and yTv are
uncorrelated with the new ones.

4 Multi-view correlation clustering

We summarize a method for multi-view correlation clustering called Canonical Least Squares (CLS)
clustering introduced by Lei et al. (2017). To analyze correlations between two views, we identify
multi-view factor analysis, including CCA, as a useful tool. We consider a mixture of local multi-
view correlation models. Formally, given a dataset described by two sets of variables x and y, a
hyperparameter for the number k of clusters, and a hyperparameter for the number m of canonical
variables to use, the goal of CLS clustering is to partition the data into k clusters such that for
instances in the same cluster, the features in x and y are correlated in the same way. A natural
choice for the correlation models would be CCA, which was explored by Fern and Friedl (2005);
however, Lei et al. (2017) propose an alternative choice, CLS, with useful properties for clustering.

Like CCA, CLS takes views of data X and Y and produces m pairs of vectors (u, v) such that the
components XTu and Y Tv have some kind of relationship. Unlike CCA, this relationship is not of
maximum correlation but of least squared error. Clustering via CLS has a few advantages over CCA.
For example, the existence of a well-formulated objective is missing from CCA clustering. One
practical benefit of this difference is that CLS clustering can be run with many different initializations,
and the solutions can be compared by the objective function to select the best one. In addition,
when m = 1, the objective function is guaranteed to never increase. Furthermore, this method
permits must-link constraints that designate sets of points that must appear in the same cluster. These
constraints can be encoded by assigning each set of points to the cluster that minimizes the sum of
squared errors over the points.

The clustering algorithm employs a structure similar to the expectation-maximization algo-
rithm (Dempster et al., 1977), alternating between update and assignment steps. Let R(i) ∈ {0, 1}n×n
be a diagonal matrix whose element at (j, j) indicates whether observation j is in cluster i.

Update step. To find m components given cluster assignments R(i) for each cluster i, the following
optimization problem is solved:

∑
i minU(i),V (i) ‖R(i)(XU (i) − Y V (i))‖2F subject to V (i)TV (i) =

I, i = 1, . . . , k, where U (i) ∈ Rd1×m and V (i) ∈ Rd2×m are the coefficients for X and Y
respectively in cluster i.
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Assignment step. To assign point (x, y) to a cluster given CLS coefficients U and V , find
argmini ‖(x>U (i) − y>V (i))‖2F .

5 Experiments

5.1 Dataset

Figure 1: Central venous
pressure waveform.

The data were collected from an experiment in which pigs were subjected
to controlled bleeding. The experimental procedure was similar to that
in Pinsky (1984). Thirty-eight Yorkshire pigs were sedated and bled at
a constant rate of 20 mL/min. Their central venous pressure (CVP), the
blood pressure in a major vein to the heart, was monitored for 20 minutes
before bleeding and 30 minutes after. Two CVP waveforms (Fig. 1) were
extracted from each respiration cycle, one from the inspiration phase
of breathing and the other from the expiration phase. Inspiration and
expiration represent the two views of the data in our experiment. The
respiration cycles lasted 5.2 seconds on average, resulting in an average
of 556 cycles per pig over the 50 minutes. Twenty-one features were extracted from each waveform
as averages and ratios between different points.

5.2 Procedure

This work employed CLS clustering as a supervised classification method by first partitioning the
data into two sets according to bleeding status. For each of these sets, CLS clusters were learned.
Each pig’s observations were constrained to belong to the same cluster. Next, test observations were
classified by finding the best fitting cluster in each of the pre-bleeding and post-bleeding models
and then computing the difference in squared-error between those two best clusters as a score. The
method was run 64 times with different random initializations, and the scores were averaged to
form the final score. This score was then used to compute the area under the receiver operating
characteristic curve (AUC), true positive rate (TPR) at a false positive rate (FPR) of 10%, and FPR at
a TPR of 50%. This testing process was used in leave-one-out cross-validation on a training set of
pigs to select the hyperparameters of numbers of clusters and components. We selected 5 clusters for
pre-bleeding and 6 for post-bleeding as well as 4 components for both models.

On the test set of pigs, the performance metrics for each pig was computed by the above process,
and the values were then averaged. In addition, we tried classifying consecutive windows of G
observations from a given pig constraining them to the same cluster. In the above process, G = 1
because observations are classified individually, but when G is greater the score is less noisy because
there are more points to make each classification. Also, we tried classifying the entire pre-bleeding or
post-bleeding phase of each pig.

5.3 Results

Table 1: My caption
Window size AUC TPR@10FPR FPR@50TPR
1 87.9 ± 5.3 72.8 ± 14.4 5.5 ± 5.5
12 89.4 ± 6.0 76.5 ± 16.9 4.7 ± 5.6
All observations 92.3 ± 15.4 - -

The different configurations resulted in performance metrics given by Table 1, which in part sum-
marize Fig. 2. As expected, when more observations were classified together, the classification
performance improved. This trend is illustrated by Figs. 4a and 4b, in which the predictions for
G = 12 are much smoother than for G = 1. When only one cluster was used for the pre-bleeding or
post-bleeding models, the AUC was 55.4± 8.0, which showed the benefit of using a mixture of local
models rather than a global model.

We examine latent factors that determine classification in Fig. 3. The factors, constructed as linear
combinations of each view, are expected to align and have zero residual. This pattern holds before
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Figure 2: ROCs of pigs in the test set with G = 1.
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Figure 3: Latent variable residuals in
Cluster 2 from one pig. Residuals di-
verge from 0 when bleeding starts.
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(a) Bleeding classification scores.
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(b) Cluster assignments. Clusters below the
green line correspond to pre-bleeding.

Figure 4: Scores and cluster assignments over time from this approach for a single pig. Bleeding
begins at t = 0.

bleeding but is violated after bleeding, which indicates that this cluster fits only before bleeding. By
examining the coefficients in the linear combinations, it may be possible to find interesting clinical
interpretations of the factors.

6 Conclusion

The main contribution of this work was to demonstrate that CVP waveforms can help predict bleeding
when the level of noise is controlled. In particular, bleeding has a relationship with correlation
structures between waveforms during inspiration and expiration. We employed a method called CLS
clustering that learns mixtures of local correlation structures to train models for pre-bleeding and
post-bleeding waveforms. The method clustered the pre-bleeding and post-bleeding phases of each
pig. One type of interpretability it offered was that sets of new observations were not only classified
by bleeding status but also assigned to clusters or phenotypes within their classes. In addition, the
classification decisions were based on interpretable factors from each view.
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