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Multi-view data

Ataxia-telangiectasia

* Features partitioned into < o
multiple sets: views e o
* Latent variables govern the - -
relationShip between VieWS The man at bat readies to swing at the O(L‘;:s::‘ydis Z
. . . . pitch while the umpire looks on. Si.ve:,:::,‘.:::m:me (€]
* Multi-view learning finds o =
agreement between views
* Our work explicitly leverages the
relationship between views as a
unit of analysis
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Characterization of multi-view relationships

Ground truth K-means or spectral clustering

o 1
x 2

o
W —

Modern multi-view clustering [Zhao 2017] Clustering aware of multi-view relationships

o 1
x 2

Carnegie Mellon University .
° | L Aut{a‘fg Zhao et al. (2017). Multi-view clustering via deep matrix factorization. AAAI.
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Current multi-view learning

(zy

* Regularize single-view solutions

(v)  y/*2
V) toward each other [Liu 2013] f’””v Vil

V=

* Fuse single-view solutions
X ~PH h th P>0 H>
[Greene 2009] Stacked such. that =0, H=0
* Apply single-view algorithms in 2ouons

common subspace by learning
shared projection Z [Gao 2015] A ||Z — Z,||

infer latent variables
L that affect all views Y;
* | often interpretable
* Analysis of L and relations R;

Carnegie Mellon University Aut ®
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Analysis of multi-view relationships

* Thesis statement: It is possible to characterize multi-view
relationships and employ them as units of analysis in descriptive
analytics and inference

* Present novel methods that characterize multi-view relationships,
either using domain knowledge or by learning from data, and employ
them as units of analysis

* Reveal structure that alternative methods do not or have competitive
empirical performance with the state of the art

Carnegie Mellon University ML Aut 8
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Outline

* Multi-view filtering
 Single sensor method for gamma source detection [NSS 2017]
* Multiple sensor extension

* Learning multi-view relationships Source and
background

* Linear multi-view relationships [NSS 2016]

* Nonlinear multi-view relationships
e Clustering [MLHC 2017, ISICEM 2019]
e Classification [MILHC 2017, ISICEM 2019]

Known relation

Sensor 1 Sensor 2

Lei et al. (2016). Radiological threat detection for an unknown energy window by canonical correlation analysis. NSS.

Lei et al. (2017). Robust detection of radiation threat by simultaneous estimation of source intensity and background. NSS.
Carnegie Mellon University ML Auto Lei et al. (2017). Bleeding detection by multi-view correlation clustering of central venous pressure. MLHC.
School of Computer Science = a Lei et al. (2019). Characterization of multi-view hemodynamic data by learning mixtures of multi-output regressors. ISICEM. 6



Multi-view filtering for gamma source
detection

* Multiple sensors = multiple views . R L A | | jeco-sian

* How do we leverage multi-view
relationships known through
domain knowledge?

* Infer latent variables by
collectively filtering views

* Reduce dependence on training

data
Truck and Pedestrian carry sensors.
Other Objects are possible source locations.
Carnegie Mellon University Auto
School of Computer Science M‘ I:.a /



Challenges of gamma source detection
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Mobile sensor collects photon spectra.
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Outline

* Multi-view filtering
* Single sensor method for gamma source detection [NSS 2017]
* Multiple sensor extension

* Learning multi-view relationships
* Linear multi-view relationships [NSS 2016]

* Nonlinear multi-view relationships
e Clustering [MLHC 2017, ISICEM 2019]
* Classification [MLHC 2017, ISICEM 2019]

Carnegie Mellon University L A“I:_*
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Single sensor methods

Fluctuation over time of gross background counts

e Stationary characterizations of .
background from training 800 |
e Matched Filter [Turin 1960] ool
* Spectral Anomaly Detection [Nelson 2012]
* Gaussian-Poisson MAP [Huggins 2014] £ 600 ¢
* Assume known source type > 500
* Do not want to depend on S 400
training data 300
* Robustness to unknown 200
background variation
* Practical utility 0 50 100 150 200 250 300 350 400

Time (min)

Turin (1960). An introduction to matched filters. IRE Transactions on Information theory.
. L. Nelson and Labov (2012). Aggregation of mobile data. LLNL Technical Report.
Carnegie Mellon University . L AUE#B Huggins et al. (2014). Using Gaussian rate priors with Poisson data likelihoods for improved detection of sources 10
School of Computer Science  Fw a of known types in cluttered background scenes. NSS.



Existing work: State-of-the-art adaptive
detector

* Orthonormal Subspace Projection Matched Filter with adaptive
background basis (RDAK) [Labov 2019]

e Residual from spectrum X onto background basis B
* Similarity with template S _ S'W({I —B(B*'WB)'B'W)X  TX
 Warm-up for basis DM(X) = NI - JIXL

* 5 min. minimum
* 10 min. optimal

* Long warm-up may be infeasible
* Source contamination

* No time
 Warm-up and test mismatch

Carnegie Mellon University ML Aut °
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dea: Simultaneously estimate source
intensity and background photon count rates

Source intensity Background rate
180 260 50
w = True intensity s Truie rate
160 Positive run estimate 240 ~ = Estimated rate | 143
Negative run estimate .
140 140
120 1%
raﬂono :;\ 100 30
: 5 125
S = 80

- 20
oor 15
407 & 10

20 :'ﬂ E i 0 100 5

i e 2. ., M4 i i .
ff [} i L . . ‘. r B ‘ .,
Sensor passes source. o L L oalfultd i AN — N
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
Time Time
Adaptive and less dependent on warm-up or training
Carnegie Mellon University L Aufe Exploits smoothness .
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Reduced dependence on warm-up or training
via Kalman Filter

* Radiation as linear dynamical system
» State x = <background rates A, source intensity y>
* Observation y = <observed spectrum>

e Kalman Filter (KF) estimates mean and covariance of state [Kalman
1960]
* Linear minimum MSE: we X N(0,Q:) Ave X N(0, Ry)
— FE [(&t,xr — 2¢)°] < E[(Z¢,Linear — 1) ]
e Often satisfied because Poisson(A) 2 N(A, A) as A =2 oo
 Warm-up can be about 1 min

Carnegie Mellon University L Auto
ML Autap

School of Computer Science == Kalman (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering. 13



Dataset and experimental design

* Spectroscopic data from a major

20-sec pass of sensor by source

metropolitan area [not publishable] | e
301 +  Start
* Synthetic injections of industrial N e

isotope at SNR usually in [1, 10]

40

* Detection of a roadside source in
a single pass

20

y-coordinate (meters)

0r o— X "
* 10 sec before and after 207
40 +
* 20,000 passes
-60 ' ' : ' ' : : :
* Disjoint data for warm-up P coordinate (meters)
Carnegie Mellon University
School of Computer Science m Au[a[)'



Our method performs better at short warm-
up periods

1 Effect of warm-up on RDAK 1 Effect of warm-up on KF
[CTIRDAK 1 [TIKF 0
RDAK 2 [TIKF1
09 " IRDAKS : T IKF2
[TIKF S
0.8 KF 10
[IRDAK 10
0.7
0.6
S os
7
0.4
0.3
02}
0.1
0 " L AN | . . N | n . P S S . L
10° 10! 102 10° 10 10°
False positives False positives
Carnegie Mellon University L Autw RDAK degrades with 5 min. or less warm-up. KF is indifferent to 1
School of Computer Science e b the amount of warm-up after 1 min. >



Our method performs better when warm-up
differs from test

Cross-train effect

* Mismatch between warm-up B

and test EroAK 20

CTKF 10

* Warm-up from different sensor
in a different area

* RDAK not designed for this and
degrades substantially

 Our method is indifferent and 0:2_
performs much better ol

10° 10" 10
False positives

Carnegie Mellon University
g y L Aul:-g 16
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Key takeaway of single sensor problem

Exploit smoothness to adapt to background with little training, which is
useful in many practical scenarios

Carnegie Mellon University L Aut;
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Outline

* Multi-view filtering
* Single sensor method for gamma source detection [NSS 2017]
* Multiple sensor extension

* Learning multi-view relationships Source and
background

* Linear multi-view relationships [NSS 2016]

* Nonlinear multi-view relationships
e Clustering [MLHC 2017, ISICEM 2019]
e Classification [MILHC 2017, ISICEM 2019]

Known relation

Sensor 1 Sensor 2

Carnegie Mellon University ML Aut °
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Multiple sensors

* More than one sensor can be
near the source simultaneously

* Simultaneous sensors are
related through background and
possible source

* How can this contemporaneous
multi-view relationship improve
inferences?

Carnegie Mellon University ML Aut
School of Computer Science === aB

2500

2000

y-coordinate (meters)

0r

-500

1500

1000

500

6-minute passes of 4 sensors by source

| X Source
I
I
’
/
y -
- -
— -
Ve
/7
/7
p
l/ - -\ 7’ ’
\ ’
i \ L7
t s \' ’
~
~ Q " P L .
& SV S ’
-1000 =500 0 500 1000 1500
r-coordinate (meters)
19



Related work: Bayesian Aggregation

e Bayesian Aggregation (BA): State-of-the-art method T 5 e
for multiple sensors [Tandon 2016] max =1 (i Hy,p)
. kL TT .
* Tracks probability of H,and H, , [ iy Pr(wi|Ho,r)
* H,: No source *—o—o—o—@
* H,,: Source is present with intensity /, at location L (and
possibly other characteristics) *——9—9o—¢
* Requires reference data to train detector to get —_—— — —

scores x; and to fit Pr(x;|H, )

* Assumes independence; does not leverage

contemporaneous multi-view structure *—o—o—o—9o
Carnegie Mellon University L Aut Tandon (2016). Bayesian aggregation of evidence for detection and characterization of patterns in multiple 20
School of Computer Science === B noisy observations. Al Matters.



* Collectively filters the inferences from individual sensors in the
Bayesian Aggregation Filter (BAF)

* Reduces dependence on training: Kalman Filter (KF) at each sensor to
bypass detector training

* Improves detection power over BA: Share information between
sensors using the collective inference of all sensors from the previous
time step

Carnegie Mellon University ML Aut 8
School of Computer Science === aB



Main idea: BA is hub for filters

BA

Source coordinates

2 Source luminosity
I(r) < 1/r
Expected intensity Expected intensity
I(r;) =1+ ¢r
Sensor 1 filter Sensor K filter
Background rates oo o Background rates
Source intensity Source intensity
Location 1 Location K
o 06 o
Observed spectrum Observed spectrum

Carnegie Mellon University ML Aut
School of Computer Science === aB



Dataset and experimental design

Previous experiment

e Spectroscopic data from a major
metropo“tan area [not publishable]

e Synthetic injections of industrial
Isotope

 Detection of a roadside source

* Baselines trained on disjoint
data

Carnegie Mellon University ML Aut#
School of Computer Science === a[}

Current experiment

* 1,2, 3, or4 passes as sensors
* No warm-up for KF

* Fix SNR at 4

* 3 min. before and after source
* 400 trials

23



Our method gains more from multiple

SENSOIrS

* Our method, BAF, performs
much better at 2 sensors
than 1

* No gain after 2 sensors

* BA (with classical MF)
always weaker than BAF but
always benefits from more

SeNsors
Carnegie Mellon University L Aut
School of Computer Science === aB
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Effect of collective filtering
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Multi-view filtering greatly decreases false positives from KF

AvEah
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Key takeaway of multiple sensors problem

Exploit smoothness and contemporaneous multiple views to achieve
better performance than state of the art in multi-sensor settings with

less training data

Carnegie Mellon University L Aut;
School of Computer Science === aB



Outline

* Multi-view filtering
* Single sensor method for gamma source detection [NSS 2017]
* Multiple sensor extension

* Learning multi-view relationships Latent variables
* Linear multi-view relationships [NSS 2016]

* Nonlinear multi-view relationships
e Clustering [MLHC 2017, ISICEM 2019]
e Classification [MILHC 2017, ISICEM 2019]

Unknown relation

Carnegie Mellon University ML A“I:_‘°
School of Computer Science ===
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Learning multi-view relationships

* The filtering work uses domain
knowledge about the multi-view
relationships

oo
W N —

* |f we lack this information, can
we learn the relationships from
data and still utilize them?

* Linear relationships
* Nonlinear relationships

X

Nonlinear multi-view relationship that can be
represented by a mixture of 3 linear relationships.

Carnegie Mellon University ML Aut -
, _ 28
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Outline

* Multi-view filtering
* Single sensor method for gamma source detection [NSS 2017]
* Multiple sensor extension

* Learning multi-view relationships Latent variables
* Linear multi-view relationships [NSS 2016]

* Nonlinear multi-view relationships
e Clustering [MLHC 2017, ISICEM 2019]
* Classification [MLHC 2017, ISICEM 2019]

Unknown relation

Carnegie Mellon University ML A“I:_‘°
School of Computer Science ===
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Canonical Correlation Analysis

* Two-view analogue to Principal Components Analysis

* Learns subspace to maximize correlation between two views
[Hotelling 1936]

T T
max,  corr(X, u,X,v)
* Non-convex optimization with closed-form solution A =%\ Yxy 3155y

* Gaussian model interpretation [Bach 2006]

)
x2)

Carnegie Mellon University L Aut;
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Background

l[dea: CCA Anomaly Detection i

Energy
Window

* Characterizes background
reference data by CCA CCA

 Checks when new observations do
not match this structure \
ew Sample

* Apply to imperfect source m |
Predicted
knowledge Window

* Energy windows as views el Bl

Linear Regression

Score
= Sum of Error?

Carnegie Mellon University M L Aut(c\ 31

School of Computer Science === a



Dataset and experimental design

e 24 hours spectroscopic data in Energy window, source, and background
one-second intervals

Energy window

Source template
Mean background
= = =Background 95% interval

* Synthetic injections of 67 source
templates

 Binary classification of each
sample

Count

* Censored Energy Window
(CEW): multi-view baseline

Energy bin

Carnegie Mellon University

Auto
School of Computer Science m I:.aB

Expect to see source most clearly in energy window.

32



CCA Detection is more robust

* True source template missing
from library

method outperforms MF-
Max, , and PCA

alternatives

* We expect to do worse than MF
and CEW, which have perfect
source information

Carnegie Mellon University

School of Computer Science

AAAAAAA

ROCs with incomplete information

MF
MF-Max
CEW
CEW-Max
CCA
e (CC A-Max
PCA
Random

0.001

0.01 0.1
FPR
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Multiple components aid detection

Component 1, background p = 0.98

, _ )
* CCA Detection score is based _o Tetdmy |

on residuals

In-window projection

e With injection, small residuals
individually, but noticeable
combined

Out-of-window projection

Component 3, background p = 0.29
®

* Weaker correlations can even S TRD], *. e | ee
be more salient

®  Test (inj.)
w w= Train fit

In-window projection

Out-of-window projection

Carnegie Mellon University L Aut
School of Computer Science === aB

In-window projection

In-window projection

Component 2, background p = 0.92

® Train (bg.)
Test (bg.) . _ ’
®  Test (inj.) Ze
P ®
w w= Train fit L ]

Out-of-window projection

Component 4, background p = 0.15

Train (bg.)

Test (bg.)
e Test (inj.)

= == Train fit

-
Out-of-window projection

34



Key takeaway of imperfect source information
oroblem

Leverage multiple linear correlations between views to make detection
robust against imperfect information, a practical scenario

Carnegie Mellon University L Aut;
School of Computer Science === aB



Outline

* Multi-view filtering
* Single sensor method for gamma source detection [NSS 2017]
* Multiple sensor extension

* Learning multi-view relationships Latent variables
* Linear multi-view relationships [NSS 2016]

* Nonlinear multi-view relationships
* Clustering [MLHC 2017, ISICEM 2019]
e Classification [MILHC 2017, ISICEM 2019]

Unknown relation

Carnegie Mellon University ML A“I:_"’
School of Computer Science === a
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Clustering methods compared

Ground truth K-means or spectral clustering

o 1
x 2
* 3

oo
W —

Modern multi-view clustering [Zhao 2017] Multi-view relationship clustering

o 1
x 2

+* 3

Carnegie Mellon University L A“I:_ ‘
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37



Our approach

* Clusters observations according
to multi-view relationships

e Fits cluster-wise linear
relationships

* Relevant latent factors are
discovered in the process

e Latent factors vary between
clusters

Carnegie Mellon University ML Aut
School of Computer Science === aB

Latent factors, view 2

o In cluster
x Out of cluster

Cluster 3

x x %o g

Cluster1

: CIustey 2

-
uo“

Latent factors, view 1

In-cluster data in Red

Other data in Grey
38



Mixture of Canonical Correlations

e How to model different subsets of observations have different
correlations?

* Generative model:

ool o
(x2) (x2) (x2) (x2)

* Each cluster has a conditionally independent CCA structure

e Want to learn both cluster labels and correlations

Carnegie Mellon University

School of Computer Science
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CCA Clustering Loss

* Expectation Maximization-like iterative algorithm
for CCA clusters [Fern 2005]

* Theoretical and empirical convergence problems

* Replace CCA with novel optimization problem,
Canonical Least Squares (CLS)

Objective

Epoch

* Non-convex optimization
Lo Canonical Least S
* Closed-form solution in first component Anonical heast >quares 5
. N min | Xu— Y5
* Greedy solution performs well empirically wERLX pERIY
subjectto  v'v = 1.

Carnegie Mellon University ML Aut
School of Computer Science === aB



Experiment on synthetic data

oo
W N =

* 10 clusters of 1,000 points each in R1%
* Gaussian
* All overlap at origin
e Features partitioned in half to make two views

X

High-dimensional version
of this with 10 clusters

_______las [ccAlkmeans Spectral

Adjusted Rand Index .99+.01 .94+.02 .005%.003 .000*.000

CLS Clustering performs best

Carnegie Mellon University ML Aut 8
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Experiment on induced bleeding

* 38 anesthetized pigs

* Time series of each subject’s
central venous pressure (CVP),
sampled at 250Hz and
featurized using domain
knowledge

* VViews correspond to CVP
waveforms at the top of
inspiration and bottom of
expiration of the breathing

cycle

Carnegie Mellon University

School of Computer'Science

Blood loss

25 min

25 min
constant
bleeding

stabilization

Inspiration view

Time

Expiration view

)

A [\C

42




Clusters across time and subjects

CLS clustering with 4 clusters

mlulllllllllllll \l -

* No explicit knowledge of
bleeding

o

S

e VVariation across time reflects

stages of bleeding response 2 o ‘ 'ﬂ | | :
* Variation across subjects reflects 2 s| G
different phenotypes /0 ik
* Our work may be first to 12 | O\

characterize structure of 500 100 0 100 200 300

res po nse [ P| NS ky 2005’ Boyd Time from bleeding (respiratory cycles)
2011 Marik 2013] Learned correlation structure
’ corresponds with blood loss
. o Pinsky and Payen (2005). Functional hemodynamic monitoring. Critical Care.
Carnegie Mellon University . L Autgfg Boyd et al. (2011). Fluid resuscitation in septic shock. Critical Care Medicine. 43
School of Computer Science === Marik and Cavallazzi (2013). Does the central venous pressure predict fluid responsiveness? Critical Care Medicine.



Fully supervised clusters

Waveform view Blood loss view
4 clusters

/ Inspiration \

Blood loss

Time

1NA

-200  -100 0 100 200 300
Time from bleeding (respiratory cycles)

Refined clusters using bleeding information.
Not same clusters as previous slide.

Carnegie Mellon University L Autg
School of Computer Science === a



Key takeaway of approach to multi-view
clustering

* Novel algorithm identifies clusters based on multi-view relationships

* Performs well quantitatively on synthetic dataset and qualitatively on
authentic bleeding dataset

Carnegie Mellon University L Aut;
School of Computer Science === aB



Outline

* Multi-view filtering
* Single sensor method for gamma source detection [NSS 2017]
* Multiple sensor extension

* Learning multi-view relationships Latent variables
* Linear multi-view relationships [NSS 2016]

* Nonlinear multi-view relationships
e Clustering [MLHC 2017, ISICEM 2019]
* Classification [MLHC 2017, ISICEM 2019]

Unknown relation

Carnegie Mellon University ML A“I:_“’
School of Computer Science === a
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Decision:

Class 0 %
x  (Class 1

(S

1. Learns CLS clusters
independently on each class

0r

2. Checks new point’s fit in each
cluster

Latent factors, view 2

1
(S

3. Classify according to best
fitting cluster 5 2 a4 o0 1 2 3

Latent factors, view |

Nonlinear multiclass For Class C with clusters j, example with views x and y is scored as
° ° L o ' . 2
generalization of CCA Scorec((x,y)) = — gnelg |Ujz — Vjyll5

anomaly detection _ o _
where U; and V; are CLS loading matrices in cluster j

Carnegie Mellon University ML Aut ,,:
_ 47
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Moving CLS to supervised classification setting

Inspiration view Expiration view
C
P v
Q
S R
Carnegie Mellon University Auto
School of Computer Science m I:.ag 4



Moving CLS to supervised classification setting

Inspiration view Expiration view

4 I
Has bleeding started?
M Yes
] No

o %

Carnegie Mellon University ML Aut
School of Computer Science === aB 9



Moving CLS to supervised classification setting

Decide whether a pair of waveforms came
from before or during bleeding

Inspiration view Expiration view
A C
4 ) y
Has bleeding started? PQ
] Yes
M No
- / R
S
Inspiration view Expiration view
4 )
Has bleeding started?
| Yes
L] No
o %
Carnegie Mellon University Aut e
School of Computer Science m I:.aB =



Classifier performance

Single cluster CLS  Final CLS  Random forest
AUC 701 £ .128 862 + .064  .891 £ .075
TPR @ .10 FPR 468 + .185 674 £ .145 762 £+ .167
TPR @ .01 FPR 222 + .134 S01 £ 185 610 4+ .210
FPR @ .50 TPR 239 £+ .152 064 £ .055 073 & .075
(95% C.l.s)

* Single cluster CLS: CLS classification with one cluster
* Final CLS: CLS classification with multiple clusters

 Random forest: best single-view classifier

Carnegie Mellon University ML Aut a
School of Computer Science === aB



monitoring (NILM)

* Pipeline of event-based NILM ¥ o]

* Event detection to identify when
appliances are switched on/off; g
binary classification :

* Event classification to identify _
which appliances are switched; .

multiclass classification

Carnegie Mellon University

School of Computer Science
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Different application: Non-intrusive load

Whole-house Aggregated Power Signal of One Day
T T T T

| | |
200 400 600 800 1000 1200 1400

Air-Conditioner Power Signal

LI

kLT

11

| |
200 400 600 800 1000 1200 1400

Ground-Truth of Electric Vehicle Charging Load
T T T T T

L -

Zhang (2019). Non-intrusive load monitoring.

1200 1400
Figure from [Zhang 2019]

Disaggregation of power signals.

1 L L L L
200 400 600 800 1000

Web. 52



Approach: Multi-view characterization of
change over time

* Transient changes in appliance state carry temporal correlation
structures

* Fingerprints of different appliances potentially discovered by clusters
* VViews are Past and Present

-house Aggreg Power Signal of One Day
10000 - ' : ' : -
=
= 5000f | |
0 | 4 | | |
200 400 600 800 1000 1200 1400
Figure from [Zhang 2019]
Carnegie Mellon University Aut e
School of Computer Science m I:.a >



Baseline: Goodness-of-fit method

* Chi-squared goodness-of-fit (GOF) test is state-of-the-art [Jin 2011]

Whole-house Aggregated Power Signal of One Day

I I I I T

. B \nwrr,ﬂﬂﬁM

200 400 660 800 100 1200 1400

Figure from [Zhang 2019]

10000

Watt

%

5000

0

* H,: Past was drawn from same distribution as Present
* H,: Distributions differ

)2
* Test statistic has chi-squared distribution Z (Pi — 4:)

* Paired in order i bi
* Gaussian assumption

Carnegie Mellon University ML Aut Jin et al. (2011). A time-frequency approach for event detection in non-intrusive load monitoring. Signal 54
LU P
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Event detection experiment

ROCs for event detection

 BLUED [Filip 2011] 03| F/
* Power from houses with multiple ol
appliances o |
* Frequently used in benchmarking o4l e
 12kHz power over 7 days with 0sl =T
labeled events
* Featurization by discrete Fourier "o 001 ool 0.1 |

transform of each window; top 5 e

principal components FPR at certain levels of TPR

GOF on power .10% .15% .50% .81% 5.5%

Results statistically significant. CLS on Fourier .08% .09% .26% .67% 3.92%

Carnegie Mellon University ML Aut;
ab



Event classification experiment

e Varied the threshold of events for a class to be included.
* Compared to Random Forest (RF), the best baseline.

1

—8— RF —O—RF

0.95 | |==@=—CLS . 095 | |=—8—CLS
09 r 09 F
085 085
_ 0.8 08 F
= =
Z e 8 075
;‘_3 0751 3 0751
(=)
0.7 0.7
0.65 0.65
0.6 0.6
055 I 0351
U.S 1 1 1 1 1 1 1 1 U.S
10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40
Minimum training events Minimum training events
Mostly statistically significant.
Carnegie Mellon University ' L Aut ° H
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Scores of two examples, one a mistake by

random forest

®
0.9
Only CLS correct
0.8 O[ Y
(o B *) ® Out of class
0.7 © Inclass
45 deg. line
0.¢ o ©°

-~
)

T
0
~

CLS class probability

2

- & Both correct
o

ot ogo @

x
0.2
(o]
0.1 %
0 : !
0 0.1 0
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RF class probability

57



Features of two examples

CLS class probability
o
<]

R

03 :“‘"&"x 'ﬁ.*‘ * o/ Both correct
02) Y ‘w;i ]
o x
0 0.1 02 03 R(;_-‘Clacqf;f“bab:]]::) 0.7 08 09
; CLS is correct but not RF A Both are correct
B Bcfore event B Bcfore event
I After event I After event
2 L -
] L ]

Value

Value

1 1 1 1

Carnegie Mellon University
School of Computer Science

(3]

3 4
Features

N

Multi-view relationship is similar between examples.

ML Autzp
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A tree that makes a mistake

CLS is correct but not RF

Both are correct

Value

1 2 3 4 5 1 2 3 4 5
Features \ Features
X6 < -5.83181o-05-Aachz 5 83181e-05
X3 < -0.386807-Awa=="0.386807 X7 < TRUAL7 >= 1.801
x1 <-0.117451 AXT==-0.117451 x1 < 092334« >= 0.9233 x1 < 20712981 >=207129 3.
Total data points = 56
0.832234 X8 >=-0.832334 X8 < 0.0985469-48 >= 0.0985469 X2 < 121192402 >=121197 031
3 46 043
046
3 < 527042 Rx3 >=-0.52704X2 < 0030696 L ATT >= -0.030696 1 x1 < 0.08275T3A 1 >= 0.0827513 x4 < 1.96236-A50 = 1.96236 58 ?g
D
080
& & X8<-0.129432 AAK6E= 04433 W6 >=-0.491435 X3 < 20829 A3 >=2.0829 ), X2 < -0.891746 AT >= -0.891746 X7 < 0.159536A 7 >= 0.159546
X8 < -0.579478 Lx&3=-0i7898 £x3 >= (8] 78395 x1 < -0.206258 A1 >=-0.206258 " f x1 < -0.574 19681 >= -0.574196 x10<-0.357055 Ax 10 >= -0.357055
3180 68 43 X8 < 0.327636 &8 >= 0.327636 ho) & XS < 42043 >= 4.3843 -0.840154 K8 >= (40154
v g = 2 =2
& x2< 0004686362 >= 000468636 X3 <2523 A3 >=252341 & N
x10<-0.142818 A& 10 >= 014281 X5 < 0.783463 AKS >= -0.783463 N
o < 0302524 Rx9 >= 0.302524 X7 < 0.120361 £&T =0030D38 RAx 1 >= 0.930253
X3 < 103358 4x3 >= 193358 ¥< 0.189653 Ax2 >= -0.189653
80 6%
/! = 2
s & X7 < 0.157242 Rx7 >= 0357242
S0 31
Carnegie Mellon University L AuI:.B Each node only uses one view. .
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Features of the mistaken class

CLS is correct but not RF

B Bcfore event
I After event 3t

Class 65 example

B Bcfore event
I After event |

(3

Value
o
Value
o

1 2 3 4 5 1 2 3 4 5
Features Features

Tree misclassifies example as Class 65 because it neglects the multi-view relationship.
Carnegie Mellon University L Aut{gn
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Key takeaway of approach to multi-view
classification

Leverage multi-view relationships as discriminative factors in
classification to perform well on bleeding and load monitoring datasets

Carnegie Mellon University L Aut;
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summary

* Operated on multi-view relationships as a unit of analysis, resulting in
novel structure and good empirical performance

 Single sensor method for gamma source detection
* Multiple sensor extension with known relationship
* Linear multi-view relationships

* Nonlinear multi-view relationships
* Clustering
* Classification

* Multi-view approach to learning on distributions

Carnegie Mellon University ML Aut °
ab



Multi-view relationships for analytics and inference
Future work

* Regression
* Multi-modal data

* Arbitrary nonlinear relationships
 Mutual information instead of correlation
* Kernel CCA [Shotaro 2006] and Deep CCA [Galen 2013]

* Theory to explain performance of CLS clustering/classification

Shotaro (2006). A kernel method for canonical correlation analysis. arXiv preprint.
Carnegie Mellon University ML A“I:_*’ Galen et al. (2013). Deep canonical correlation analysis. ICML.
School of Computer Science === a[;
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Homeland N ‘S&;J

S e Cu I' j_ ty National Nuclear Security Administration
National Institutes
of Health
260 450 BA
Energy window — True rate Source coordinates
== Source template 240 - = = Estimated rate| |43 2 Source luminosity
==Mean background 3 *  Measurements 1(7) X 1/’
= = =Background 95% interval 220 + m— [ntensity 140 Expected intensity Expected intensity
£ 200 1%
= P =) 2
g 130 'Z I(r;)=1I1; +€r
= < 180 3
5 = 125 E Sensor 1 filter Sensor K filter
o §,) 160 1 % Backgroynd rates PP Backgroynd rates
S > Source intensity Source intensity
& 140 - e
115 I I
120 410
Location 1 Location K
100 45 oo 0
Observed spectra Observed spectra
80 - - - - - - 0
Energy bin 0 100 200 300 400 ' 500 600 700 800 900
Time
Inspiration view Expiration view
A C
Whole-house Aggregated Power Signal of One Day
10000 [ T T T T T T T ]
B
0 1 — |Ul | 1 il
1 200 400 600 800 1000 1200 1400

-200  -100 0 100 200 300
Time from bleeding (respiratory cycles)

Lei et al. (2016). Radiological threat detection for an unknown energy window by canonical correlation analysis. NSS.

Lei et al. (2017). Robust detection of radiation threat by simultaneous estimation of source intensity and background. NSS.
Carnegie Mellon University L Auto Lei et al. (2017). Bleeding detection by multi-view correlation clustering of central venous pressure. MLHC.
School of Computer Science = aB Lei et al. (2019). Characterization of multi-view hemodynamic data by learning mixtures of multi-output regressors. ISICEM. 64
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More than two views

* Generalized CCA [Horst 1961] finds shared representation G between
all views

J
minimize Z |G — UjTXjH%
UJERdJ XT’,GERT'XN 321

subject to GG' =1,

e Other extensions of CCA loss could be sum or minimax over pairwise
loss

Carnegie Mellon University ML Au Horst (1961). Generalized canonical correlations and their applications to experimental data.
vl - L r J | o
) e i ity of Washi le.
School of Computer Science & I:.aB University of Washington, Seattle. . - . o0
Benton (2017). Deep generalized canonical correlation analysis. arXiv preprint.



Adaptive Filtering to Set Up Kalman Filter

* KF is very sensitive to the hyperparameters and

An adaptive KF assumes they are non-stationary and estimates them in real-time
* Bayesian, MLE, covariance matching, correlation
* Often computationally expensive

* We propose a simple method that functions well for this problem

where is a Gaussian filter with length and variance
Disadvantage 1: Introduces additional uncertainty
Disadvantage 2: Requires a short burn-in period ( measurements)

Carnegie Mellon University ML Aut;
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Prediction approaches

e Estimated background is detection score

* Insert background estimates into other methods
* Matched Filter maximizes signal-to-noise ratio and is given by:
h=cov(X) s
for spectra X and threat template s
* Use past k estimates of background to get current covariance? No
 cov(X) - diag(x,) where x, is current estimated background

Carnegie Mellon University ML Aut;
School of Computer Science === aB



Hypotheses restricted to pass area

Two passes

Heatmap of BA score (inj)

1500 I 1800
Rl = = =Sensor |
N L N ~ = = =Sensor 2 41600
1000 . Source
=TSN
. . 1 1400
z 500 N
= \ " 11200
g \ 2
= 0F g
- Q\ A= 1000
= [
x N o
g S
=500 . S 800
- . =
S \\ =
S 600
% -1000 | pRN
~
.~ 400
-1500 RN .
e 200
-2000 : : : : : : : 0
-1500 -1000 -500 0 500 1000 1500 2000 r-coordinate
r-coordinate (meters)
BA and BAF look for source in intersection of sensor paths.
Carnegie Mellon University L Aut °
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ROC statistics for multi-view filtering

0.5
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Carnegie Mellon University
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TPR @ FPR = 1%
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Confidence intervals from bootstrapped passes.
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Evaluating the Kalman Filter with Training-Test
Mismatch

* The Kalman filter does not require training data, but other
methods usually do

300

* It may be naive to assume that training data match test data — Origin
* To induce mismatch between training and test background, 207

test spectra were shifted to higher energy bins, similar to an

extreme form of gain drift 200 |

* We compared several methods:

* Oracle: Likelihood ratio using exact background rates and
intensity

* Optimal GP: GP with perfect prior
* Kalman GP (KGP): GP with prior set by KF

* Moving Average GP (MA GP): Like KGP but with simple moving
average

* GP: GP method with prior set by training data % 0 0 " %0 100 20

* Naive KGP: KGP with non-adaptive covariance hyperparameters Energy bin
estimated from training data

* Intensity: Intensity estimated by KF

150 -

Count

100

50

Carnegie Mellon University ML Aut ,,:
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Examining Estimated Intensity and Scores

]80 r 25 T T T T T T T T 180
m——True intensity *  Positive run scores
160 Positive run estimate Negative run scores| 1 160
Negative run estimate| = [ntensity

140 - 207 1140

120 1120
15
£7100 ) 1100 £
z 5 2
o) k5] o)
R Z 180 Z

10|
60 [ 160
40} . sl 140
K 1 : g
20r I B Y A1 22 B, 2 0% 20
[ l‘l". ;I. |f,.._ ;-;. o l" I ; ,bf i .‘I‘ f -J' » .~o' . W 3 ® o
0 b e TG WY, "‘-"L_AL'L.J.IF‘J.J!;.L h, 0 : = = —1p
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
Time Time
(a) Kalman filter intensity estimates. (b) KGP scores.

* Estimates of intensity were compared to the true intensity, which spiked when the detector moved near the source
* Intensity and KGP scores tracked the true intensity well with low lag
* There were not large spikes when there was no source

Carnegie Mellon University ML Aut
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Alternative Circumstances of Source
Detection

* |f we do not know what threat
design to expect, we can use
Spectral Anomaly Detection (SAD
or PCA) (Tandon 2016). s 077

* |f we have perfect knowledge of
the shape of threat spectrum, we
can use a Matched Filter (MF)
(Tandon 2016)

* |n practice, we often have an idea
of what threat to expect, but our

L : . |
knowledge of it is usually imperfect — — .- ;

FPR

Carnegie Mellon University ML Aut .
: y 73
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ROCs for one particular threat template.
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Alternative Circumstances of Source
Detection

* If we can predict the variety of
possible threat templates and
form a library of threat
templates, we can use
marginalized version of
Matched Filter, i.e., MF-Max

ROCs for one particular threat template.

. 2 0.4
* It would work as well as MF if =

marginalization always correctly 899/

picked the right threat template & 0.2

to use 0.1

O I
0.001 0.01 0.1 1

Carnegie Mellon University ML Aut e FPR
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Simulations with Imperfect Information

* We compare MIF-Max, CEW, and where we marginalize over a threat library that does not
contain the actual threat.

 Our method yields improved performance closer to the optimal information case.
ROCs for a single threat 1 ROCs for a dlfferent threat
MF MF
0.9 1 v 0.9 1| v
CEW-Opt CEW-Opt
0.8 CEW 0.8 CEW
C CCA CCA
g 0.7 - m— Random § 0.7 - m— Random
(@] (®]
§ 0.6 206"
©
%5 0.5+ 45 0.5
>
204 £o4
3 3
3 03¢ 803
e (@)
a 0.2 a 0.2+
0.1¢ 0.1 / /
0 - 0!
0.001 0.01 . 0.001 0.01
FPR FPR
Carnegie Mucarvs s
AUT®©
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Changing the Energy Window Quality

1. Compute global average threat template
2. Compute convex combinations of average template and actual template

3. Find energy windows of combination templates and pass to CEW and CCA

Global average window > Combination window Optimal individual window

Carnegie Mellon University -
] v . L Aut L H 76
School of Computer Science === a



Changing the Energy
Window Quality

* FPR for each method as the
window changes from low-
qguality to optimal

* Asinformation about the
threat spectrum decreases,
the performance of CEW
degrades and becomes much
worse than

 (Other methods do not use a
window)

Carnegie Mellon University L Aut
School of Computer Science === ag

lower is better

05 - Average FPR over 67 threats.

S I Vi
) L
B 0.45 B PCA
g B MF-Max
o 04 I CEW
o CCA
© 035
0
o)
o 0.3
X
QR 025
®
o 0.2
o
-
0.15
0.1
0.05 | —
O | | | |
0 0.25 0.5 0.75 1
Global average Quality of energy window Optimal individual
window window
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Existing approaches include CCA

A common approach is component analysis, such as
Canonical Correlation Analysis (CCA), which fits a linear
correlation model between two views

View

1 row range  center_laicenter_loiplot_id pi SF17_VGI_SF17_VGI_ il ohenotyp date northing easting gridnum  gridletter row range  reading
2 0 1 1 34.62283  -82.733 SF17-BE-p Top76 -1 -1 Ell sF17_VGI_ 6/28/2017 341136.2 3832526 17s 81 1 0.050488
3 1 5 1 34.62281 -82.733 SF17-BE-p P1_569459 60 -0.01176 Bl SF17_VGI_ 6/28/2017 341136.1 3832526 17s 81 1 0.051184
4 2 9 1 34.62278 -82.733 SF17-BE-p PI_569244 66 -0.01835 Pl sF17 VGl 6/28/2017 3411361 3832526 173 81 1 0.053378
5 3 13 1 34.62275 -82.733 SF17-BE-p P1_656035 61 -0.01462 SF17_VGI_6/28/2017 341136.1 3832526 175 81 1 0.054087
6 4 17 1 34.62273 -82.733 SF17-BE-p P1_329300 62 0.023038 | SF17_VGI_6/28/2017 341136 3832526 17S 81 1 0.053768
7 s 21 1 34,6227 -82.733 SF17-BE-p PI_156178 7 0.012624 SF17_VGI_6/28/2017 341136 3832526 175 81 1 0.055059
6 25 1 34.62267 -82.733 SF17-BE-p PI_329646 75 -0.00574 SF17_VGI_6/28/2017 341136 3832526 17s 81 1 0.056373
9 7 29 1 34.62265 -82.733 SF17-BE-p P_643016 5 0.077219 Bl sF17 vGi 6/28/2017 341136 3832526 175 81 1 0.056966
10 8 33 1 34.62262 -82.733 SF17-BE-p PI_255744 -1 -1 ) SF17_VGI_6/28/2017 341135.9 3832526 17s 81 1 0.058119
1 9 37 1 34.6226 -82.733 SF17-BE-p PI_152651 -1 -1 il SF17_VGI_ 6/28/2017 341135.9 3832526 178 81 1 0.058122
2 10 a1 1 34.62257 -82.733 SF17-BE-pFill 134 -0.0129 [l 5717 VGI_6/28/2017 341135.9 3832526 17s 81 1 0.05825
11 a5 1 34.62254 -82.733 SF17-BE-p P1_569459 -1 -1 {E] 5717 VGI_6/28/2017 341135.8 3832526 17s 81 1 0.059209
14 12 49 1 3462252 -82.733 SF17-BE-p PI_569244 30 0.024037 {5717 VGI_6/28/2017 341135.8 3832526 175 81 1 0.058273
15 13 53 1 34.62249 -82.733 SF17-BE-p PI_656035 55 -0.01009 {E] 5F17_VGI_6/28/2017 341135.8 3832526 175 81 1 0.058624
16 14 57 1 34.62247 -82.733 SF17-BE-p PI_329300 -1 -1 M) SF17_VGI_ 6/28/2017 341135.8 3832526 17s 81 1 0.058834
17 15 61 1 34.62244 -82.733 SF17-BE-p PI_156178 1 1 i 5F17_VGI_6/28/2017 3411357 3832526 173 81 1 00584
18 16 65 1 34.62241 -82.733 SF17-BE-p PI_329646 77 0.032889 {EY 5717 vGI_6/28/2017 3411356 3832526 175 81 1 00519
19 17 69 1 34.62239  -82.733 SF17-BE-p PI_643016 -1 -1 Bl sF17_VGI_6/28/2017 341135.6 3832526 17 81 1 0.05027
20 18 73 1 34.62236 -82.7329 SF17-BE-p PI_255744 -1 -1 Pl SF17_VGI_ 6/28/2017 341135.5 3832526 17s 81 1 0.050918
21 19 77 1 34.62233  -82.733 SF17-BE-p PI_152651 -1 -1 Bl sF17_vG1_6/28/2017 3411355 3832526 17s 81 1 0.052112

Carnegie Mellon University L Au[

School of Computer Science === a



Restaurant example

kids

function of price

* Increasing in price for adults
e Decreasing in price for kids

We observe restaurant price and
review score but not the type of

reviewer

Carnegie Mellon University L Aut
ab
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Restaurant characterized only by price
Review characterized only by score

Two kinds of reviewers: adults and

A reviewer’s score is a monotonic

Score

O  Adults
e Kids

(One variable per view in this
example, but usually multivariate)

Price




Restaurant example (cont.)

* Given restaurants and reviews,
task is to identify the

relationship between them , - Kids
e Since there are two populations Voo 5.8
. . . . © oo’ . o ® ©°
of reviewers, this relationship EA S W
' 7 8% e ©
varies ﬁ—m—e**—#% SEE N
* Existing approaches like CCA o Fo Tt
may struggle because they only —
search for global linear structure
Carnegie Mellon University
School of Computer Science m Au[é[)' 80



Roadmap to our approach

CLS classification

/-

CLS clustering

/

CLS
/C CA
PCA
Carnegie Mellon University
School of Computer‘Science m A"I:.aB



Principal components analysis and canonical
correlation analysis

PCA CCA
* Analyzes directions of maximum ¢ Analyzes directions of maximum
variance in a single view correlation between two views
* Decomposes view into linear  Decomposes each view into
combinations of variables linear combinations of variables
* Finds multiple orthogonal * Finds multiple orthogonal
loadings components
* Components are ranked by * Components are ranked by
contribution to variance contribution to covariance
Carnegie Mellon University °
School of Computer Science —L Au[é[).
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Formal statement of CCA )

* Non-convex optimization with closed-form solution:

max  Corr(X"u,Y ") @

ueR?X yeRAY
* X'u and Y'v are latent factors called canonical variables
* The solution for u is the leading eigenvector of
—1 —1 T
A=Y xXxyXyyXxy
and similarly for v

* There are multiple components: the mth factor can be found by solving

max Corr(X "u, Y Tv)
uweERx veRY

subjectto  Cov(Xu, Xu;) = Cov(Yv,Yv;) =0,

Carnegie Mellon University L / 1 = 17 c ey m — ]..
School of Computer Science === Lab



Recap of the linear approach

* A common approach is component analysis, such as Canonica
Correlation Analysis (CCA), which fits a linear correlation
model between two views

1 row range  center_laicenter_loiplot_id pi SF17_VGI_SF17_VGI_ phenotyp date northing easting gridnum _ gridletter row range  reading
0 1 1 34.62283 -82.733 SF17-BE-p Top76 -1 -1 SF17_VGI_ 6/28/2017 341136.2 3832526 175 81 1 0.050488
1 5 1 34.62281 -82.733 SF17-BE-p PI_569459 60 -0.01176 SF17_VGI_ 6/28/2017 341136.1 3832526 175 81 1 0.051184
2 9 1 34.62278 -82.733 SF17-BE-p PI_569244 66 -0.01835 SF17_VGI_ 6/28/2017 341136.1 3832526 175 81 1 0.053378
3 13 1 34.62275 -82.733 SF17-BE-p PI_656035 61 -0.01462 o SF17_VGI_ 6/28/2017 341136.1 3832526 175 81 1 0.054087
6 a 17 1 3462273 -82.733 SF17-BE-p PI_329300 62 0.023038 51 SF17_VGI_ 6/28/2017 341136 3832526 175 81 1 0.053768
7 5 21 1 34.6227 -82.733 SF17-BE-p PI_156178 7 0.012624 < SF17_VGI_ 6/28/2017 341136 3832526 175 81 1 0.055059
8 6 25 1 34.62267 -82.733 SF17-BE-p PI_329646 75 -0.00574 % 341136 3832526 175 81 1 0.056373
9 7 29 1 34.62265 -82.733 SF17-BE-p PI_643016 5 0.077219 — 341136 3832526 175 81 1 0.056966
8 33 1 34.62262 -82.733 SF17-BE-p PI_255744 -1 -1 g 341135.9 3832526 175 81 1 0.058119
1 9 37 1 34.6226 -82.733 SF17-BE-p PI_152651 -1 -1 = 341135.9 3832526 175 81 1 0.058122
12 10 a1 1 34.62257 -82.733 SF17-BE-p Fill 134 -0.0129 = 341135.9 3832526 175 81 1 0.05825
E] 1 a5 1 34.62254 -82.733 SF17-BE-p PI_569459 -1 -1 o 341135.8 3832526 175 81 1 0.059209
14 12 49 1 3462252 -82.733 SF17-BE-p PI_569244 30 0.024037 = 341135.8 3832526 175 81 1 0.058273
15 13 53 1 34.62249  -82.733 SF17-BE-p PI_656035 55 -0.01009 5 341135.8 3832526 175 81 1 0.058624
16 14 57 1 34.62247 -82.733 SF17-BE-p PI_329300 -1 -1 Py 341135.8 3832526 175 81 1 0.058834
17 15 61 1 34.62244  -82.733 SF17-BE-p PI_156178 -1 -1 - 341135.7 3832526 175 81 1 00584
18 16 65 1 34.62241 -82.733 SF17-BE-p PI_329646 77 0.032889 VGl 341135.6 3832526 175 81 1 00519
19 17 69 1 34.62233  -82.733 SF17-BE-p PI_643016 -1 -1 SF17_VGI_ 6/28/2017 341135.6 3832526 175 81 1 0.05027
18 73 1 34.62236 -82.7329 SF17-BE-p PI_255744 -1 -1 SF17_VGI_ 6/28/2017 341135.5 3832526 175 81 1 0.050918
2 19 77 1 34.62233  -82.733 SF17-BE-p PI_152651 -1 -1 SF17_VGI_ 6/28/2017 341135.5 3832526 175 81 1 0.052112

 However, CCA might struggle if the correlations are nonlinear
or non-global

Carnegie Mellon University L Aut °
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Mixture of CCA optimization

* This (simplified) optimization problem looks like
min ST X Dul®) — y D)2
/ J

ct. oy DT XDT xU)y@) — )Ty DTy @)@ — 1
* Ris cluster labels
e XU) and YV are subsampled data matrices of cluster j
* PSD objective in u,v but quadratic constraints
 Alternative way of writing CCA that looks like least-squares

Carnegie Mellon University ML Aut;
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Canonical Least Squares

* CLS is our alternative to CCA that is better for clustering

* Minimizes squared error in latent space:
min 1 Xu —Yol3
wERIX veERY

subjectto  v'v = 1.

* PSD objective and quadratic constraint
* data-agnostic Ty =1 inst X TXu =0T VTVe =1
e Still has closed-form solution: v is the lowest eigenvector

of and v Thy = (XTX) X TV

_ Ty\—1vT
WhereH_I—X(X X)X
* Lowest eigenvector corresponds to minimizing variance of

a regression residual
Carnegie Mellon University ML Aut B
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Multiple CLS components

* Like CCA, CLS can find multiple components

* PSD objective and quadratic constraints:

min XU - YV|%
UERdX Xm
VERdY Xm

subjectto V'V =1.

* No known closed-form solution
e Constraint prevents O solution, does not normalize scale
* Sensitive to scale, so usually standardize data

* We solve for components V via a ﬁreedy sequential
approximation by taking V to be the lowest eigenvectors

CY'HY

 CCA was a multiple correlation problem, while CLS is a
multi-output regression problem

Carnegie Mellon University Aut ®
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Convergence

* When number of components m = 1, algorithm is guaranteed to
converge
* Objective decreases at every step
* For some problems, first component is most meaningful

* For higher m, the algorithm does not necessarily converge because of
greedy approximation
* Empirically not a problem

Carnegie Mellon University ML Aut;
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Analyzing blood loss with CVP

Inspiration

* Dataset contains time
series of each pig’s central
venous pressure (CVP),
blood pressure near right
atrium of heart

* Each waveform is from
either inspiration or
expiration phase of
respiration

 Thirteen features were
extracted from each
waveform as averages and
ratios between different
points of the CVP

waveform

Carnegie Mellon University ML Autf
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Unsupervised setting: correlating inspiration
and expiration waveforms

* We consider inspiration and expiration as the views

* We expect the correlations to still depend on
bleeding, which is unobserved

Inspiration view Expiration view

Carnegie Mellon University

School of Computer'Science
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Unsupervised latent variables

Cluster 1

Inspiration 7 Expiration
0 1
1 0
z- z
é A‘F‘w-. é_l
— First component  -= -
— Second component - 4
S0 200 400 600 0 200 400 600
Time Time
— Fourth component
P Cluster 3
Inspiration Expiration
6 6
4 4
2 h—~A 2
&’ &
4 -6
6 )

-8 -10
0 200 400 600 0
Time

Carnegie Mellon University Aut ° .
School of Computer Science _L a The latent variables resemble blood loss.
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Supervised classification setting: correlating inspiration and
expiration with knowing whether bleeding had started

e Task: decide whether a pair of waveforms came from before or
after onset of bleeding
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Cluster assignments for test pigs

Unsupervised Supervised
(4 clusters) (3 clusters non-bleeding, 5 clusters bleeding)
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We identified pre-bleeding and post-bleeding clusters, which are

Carnegie Mellon University ML um,lgyrplistinct. The predominant pre-bleeding cluster is
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Waveform analysis

Expiration Pre-Bleeding Expiration Post-Bleeding

 We analyze the impact of waveform features by analyzing the gradient of
classification score

e Left: Our model predicts that shrinking the marked lengths is correlated with
bleeding in a pre-bleeding observation.
* Right: The corresponding lengths have shrunk in a post-bleeding observation.
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Global regression model for single-view data

e Reduced-rank regression (RRR) is a multi-output regression method

* Has closed-form solution using eigendecomposition of XB, <

* Also can be written I(I]ngl 1Y — XUVT||%

rank r

Low-rank latent space links inputs and outputs
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Global regression model for multi-view data

* Inputs and coefficients are partitioned into G views B = (B{,...,B)'
* Want each B, to be “low rank” — group-wise low rank constraint

G
1
min |V = XBJE+ A3 wy|| B,

g=1

* | |M]| |« is nuclear norm, the sum of singular values, a convex
relaxation of rank

* Exploits multi-view structure because each view connects to a
separate low-rank latent space
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MoE with iRRR

* Nuclear norm regularization corresponds to a prior on expert
parameters

* However, we are unsure if there is a valid probability distribution that
leads to the nuclear norm penalty

* We use a pseudo-distribution that suffices mathematically

Pr(B) = | | Pr(B,)

x [T exp(=Muwy|[Byll.) = exp(=A> " w,|By|.)

g
* From here, EM is straightforward

g
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Multi-view relationships in sets of points

* iRRR does not use relationships between views

* We propose to use these relationships by weighting experts based on
correlation structure

* Correlations are only defined on sets of points, so we assume the
observations are already partitioned

* All points in a partition are given the same expert weights
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