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Multi-view data 

•  Features	partitioned	into	
multiple	sets:	views	
•  Latent	variables	govern	the	
relationship	between	views	
• Multi-view	learning	finds	
agreement	between	views	
• Our	work	explicitly	leverages	the	
relationship	between	views	as	a	
unit	of	analysis	
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Characterization of multi-view relationships 
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Ground	truth	 K-means	or	spectral	clustering	

Modern	multi-view	clustering	[Zhao	2017]		 Clustering	aware	of	multi-view	relationships	

Zhao	et	al.	(2017).	Multi-view	clustering	via	deep	matrix	factorization.	AAAI.	



Current multi-view learning 

• Regularize	single-view	solutions	
V(v)	toward	each	other	[Liu	2013]	
•  Fuse	single-view	solutions	
[Greene	2009]	
• Apply	single-view	algorithms	in	
common	subspace	by	learning	
shared	projection	Z	[Gao	2015]	
•  This	work:	infer	latent	variables	
L	that	affect	all	views	Yj	
•  L	often	interpretable	
•  Analysis	of	L	and	relations	Rj	
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Stacked		
solutions		
from	views	

Liu	et	al.	(2013).	Multi-view	clustering	via	joint	nonnegative	matrix	factorization.	ICDM.	
Gao	et	al.	(2015).	Multi-view	subspace	clustering.	ICCV.	
Greene	et	al.	(2009).	A	matrix	factorization	approach	for	integrating	multiple	data	views.	ECML	PKDD.	
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Analysis of multi-view relationships 

•  Thesis	statement:	It	is	possible	to	characterize	multi-view	
relationships	and	employ	them	as	units	of	analysis	in	descriptive	
analytics	and	inference	

• Present	novel	methods	that	characterize	multi-view	relationships,	
either	using	domain	knowledge	or	by	learning	from	data,	and	employ	
them	as	units	of	analysis	
• Reveal	structure	that	alternative	methods	do	not	or	have	competitive	
empirical	performance	with	the	state	of	the	art	
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Outline 

• Multi-view	filtering	
•  Single	sensor	method	for	gamma	source	detection	[NSS	2017]	
•  Multiple	sensor	extension	

•  Learning	multi-view	relationships	
•  Linear	multi-view	relationships	[NSS	2016]	
•  Nonlinear	multi-view	relationships	

•  Clustering	[MLHC	2017,	ISICEM	2019]	
•  Classification	[MLHC	2017,	ISICEM	2019]	
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Sensor	1	 Sensor	2	

Source	and	
background	

Known	relation	

Lei	et	al.	(2016).	Radiological	threat	detection	for	an	unknown	energy	window	by	canonical	correlation	analysis.	NSS.	
Lei	et	al.	(2017).	Robust	detection	of	radiation	threat	by	simultaneous	estimation	of	source	intensity	and	background.	NSS.	
Lei	et	al.	(2017).	Bleeding	detection	by	multi-view	correlation	clustering	of	central	venous	pressure.	MLHC.	
Lei	et	al.	(2019).	Characterization	of	multi-view	hemodynamic	data	by	learning	mixtures	of	multi-output	regressors.	ISICEM.	
	



Multi-view filtering for gamma source 
detection 
• Multiple	sensors	=	multiple	views	
• How	do	we	leverage	multi-view	
relationships	known	through	
domain	knowledge?	
•  Infer	latent	variables	by	
collectively	filtering	views	
• Reduce	dependence	on	training	
data	
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Truck	and	Pedestrian	carry	sensors.	
Other	Objects	are	possible	source	locations.	



Challenges of gamma source detection 
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Mobile	sensor	collects	photon	spectra.	 Source	affects	distribution	of	photon	counts.	

Background	

Source	

Total	

•  Unknown	
background	

•  Noise	
•  Hidden	sources	
•  Low	signal-to-

noise	ratio	(SNR)	



Outline 

• Multi-view	filtering	
•  Single	sensor	method	for	gamma	source	detection	[NSS	2017]	
•  Multiple	sensor	extension	

•  Learning	multi-view	relationships	
•  Linear	multi-view	relationships	[NSS	2016]	
•  Nonlinear	multi-view	relationships	

•  Clustering	[MLHC	2017,	ISICEM	2019]	
•  Classification	[MLHC	2017,	ISICEM	2019]	
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Single sensor methods 

•  Stationary	characterizations	of	
background	from	training	
•  Matched	Filter	[Turin	1960]	
•  Spectral	Anomaly	Detection	[Nelson	2012]	
•  Gaussian-Poisson	MAP	[Huggins	2014]	

• Assume	known	source	type	
• Do	not	want	to	depend	on	
training	data	
•  Robustness	to	unknown	
background	variation	
•  Practical	utility	
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Turin	(1960).	An	introduction	to	matched	filters.	IRE	Transactions	on	Information	theory.	
Nelson	and	Labov	(2012).	Aggregation	of	mobile	data.	LLNL	Technical	Report.		
Huggins	et	al.	(2014).	Using	Gaussian	rate	priors	with	Poisson	data	likelihoods	for	improved	detection	of	sources		

	of	known	types	in	cluttered	background	scenes.	NSS.	



Existing work: State-of-the-art adaptive 
detector 
• Orthonormal	Subspace	Projection	Matched	Filter	with	adaptive	
background	basis	(RDAK)	[Labov	2019]	
•  Residual	from	spectrum	X	onto	background	basis	B	
•  Similarity	with	template	S	

• Warm-up	for	basis	
•  5	min.	minimum	
•  10	min.	optimal	

•  Long	warm-up	may	be	infeasible	
•  Source	contamination	
•  No	time	
• Warm-up	and	test	mismatch	

11	
Labov	and	Nelson	(2019).	Private	communication.	



Idea: Simultaneously estimate source 
intensity and background photon count rates 
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Background	rate	Source	intensity	

Sensor	passes	source.		

Adaptive	and	less	dependent	on	warm-up	or	training	
Exploits	smoothness	



• Radiation	as	linear	dynamical	system	
•  State	x	=	<background	rates	λ,	source	intensity	γ>	
•  Observation	y	=	<observed	spectrum>	

• Kalman	Filter	(KF)	estimates	mean	and	covariance	of	state	[Kalman	
1960]	
•  Linear	minimum	MSE:	

•  Often	satisfied	because	Poisson(λ)	à	N(λ,	λ)	as	λ	à	∞	

• Warm-up	can	be	about	1	min	

Reduced dependence on warm-up or training 
via Kalman Filter 
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xt+1 = xt +wt
yt = λt +γ t s+ vt

Kalman	(1960).	A	new	approach	to	linear	filtering	and	prediction	problems.	Journal	of	Basic	Engineering.	



Dataset and experimental design 

•  Spectroscopic	data	from	a	major	
metropolitan	area	[not	publishable]	

•  Synthetic	injections	of	industrial	
isotope	at	SNR	usually	in	[1,	10]	
• Detection	of	a	roadside	source	in	
a	single	pass	
•  10	sec	before	and	after	
•  20,000	passes	
• Disjoint	data	for	warm-up	
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Our method performs better at short warm-
up periods 

15	
RDAK	degrades	with	5	min.	or	less	warm-up.	KF	is	indifferent	to	
the	amount	of	warm-up	after	1	min.	



Our method performs better when warm-up 
differs from test 
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• Mismatch	between	warm-up	
and	test	
• Warm-up	from	different	sensor	
in	a	different	area	
• RDAK	not	designed	for	this	and	
degrades	substantially		
• Our	method	is	indifferent	and	
performs	much	better	



Key takeaway of single sensor problem 

Exploit	smoothness	to	adapt	to	background	with	little	training,	which	is	
useful	in	many	practical	scenarios	
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Outline 

• Multi-view	filtering	
•  Single	sensor	method	for	gamma	source	detection	[NSS	2017]	
• Multiple	sensor	extension	

•  Learning	multi-view	relationships	
•  Linear	multi-view	relationships	[NSS	2016]	
•  Nonlinear	multi-view	relationships	

•  Clustering	[MLHC	2017,	ISICEM	2019]	
•  Classification	[MLHC	2017,	ISICEM	2019]	
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Sensor	1	 Sensor	2	

Source	and	
background	

Known	relation	



Multiple sensors 

• More	than	one	sensor	can	be	
near	the	source	simultaneously	
•  Simultaneous	sensors	are	
related	through	background	and	
possible	source	
• How	can	this	contemporaneous	
multi-view	relationship	improve	
inferences?	
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Related work: Bayesian Aggregation 
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• Bayesian	Aggregation	(BA):	State-of-the-art	method	
for	multiple	sensors		[Tandon	2016]	
•  Tracks	probability	of	H0	and	Hk,L	

•  H0:	No	source	
•  Hk,L:	Source	is	present	with	intensity	Ik	at	location	L	(and	
possibly	other	characteristics)	

• Requires	reference	data	to	train	detector	to	get	
scores	xi	and	to	fit	Pr(xi|Hk,L)	
• Assumes	independence;	does	not	leverage	
contemporaneous	multi-view	structure	

Tandon	(2016).	Bayesian	aggregation	of	evidence	for	detection	and	characterization	of	patterns	in	multiple		
	noisy	observations.	AI	Matters.	



Our approach: Multi-view filtering 

• Collectively	filters	the	inferences	from	individual	sensors	in	the	
Bayesian	Aggregation	Filter	(BAF)		
• Reduces	dependence	on	training:	Kalman	Filter	(KF)	at	each	sensor	to	
bypass	detector	training	
•  Improves	detection	power	over	BA:	Share	information	between	
sensors	using	the	collective	inference	of	all	sensors	from	the	previous	
time	step	
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Main idea: BA is hub for filters 
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BA	

Sensor	1	filter	

Source	coordinates	
Source	luminosity	

Background	rates	
Source	intensity	

Location	1	

Sensor	K	filter	

Location	K	

Background	rates	
Source	intensity	

Expected	intensity	Expected	intensity	

Observed	spectrum	Observed	spectrum	



Dataset and experimental design 

Previous	experiment	
•  Spectroscopic	data	from	a	major	
metropolitan	area	[not	publishable]	

•  Synthetic	injections	of	industrial	
isotope	
• Detection	of	a	roadside	source	
• Baselines	trained	on	disjoint	
data	

Current	experiment	
•  1,	2,	3,	or	4	passes	as	sensors	
• No	warm-up	for	KF	
•  Fix	SNR	at	4	
•  3	min.	before	and	after	source	
•  400	trials	
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Our method gains more from multiple 
sensors 
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1	sensor	

3	sensors	

2	sensors	

4	sensors	

• Our	method,	BAF,	performs	
much	better	at	2	sensors	
than	1	
• No	gain	after	2	sensors	
• BA	(with	classical	MF)	
always	weaker	than	BAF	but	
always	benefits	from	more	
sensors	

Sensors	ordered	from	closest	to	farthest	from	source.	
Dashed	lines	are	from	the	previous	number	of	sensors.	



Effect of collective filtering 

25	

Multi-view	filtering	greatly	decreases	false	positives	from	KF	



Key takeaway of multiple sensors problem 

Exploit	smoothness	and	contemporaneous	multiple	views	to	achieve	
better	performance	than	state	of	the	art	in	multi-sensor	settings	with	
less	training	data	
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Outline 

• Multi-view	filtering	
•  Single	sensor	method	for	gamma	source	detection	[NSS	2017]	
•  Multiple	sensor	extension	

•  Learning	multi-view	relationships	
•  Linear	multi-view	relationships	[NSS	2016]	
•  Nonlinear	multi-view	relationships	

•  Clustering	[MLHC	2017,	ISICEM	2019]	
•  Classification	[MLHC	2017,	ISICEM	2019]	

27	

View	1	 View	2	

Latent	variables	

Unknown	relation	



Learning multi-view relationships 

•  The	filtering	work	uses	domain	
knowledge	about	the	multi-view	
relationships	
•  If	we	lack	this	information,	can	
we	learn	the	relationships	from	
data	and	still	utilize	them?	
•  Linear	relationships	
•  Nonlinear	relationships	

28	

Nonlinear	multi-view	relationship	that	can	be	
represented	by	a	mixture	of	3	linear	relationships.	



Outline 

• Multi-view	filtering	
•  Single	sensor	method	for	gamma	source	detection	[NSS	2017]	
•  Multiple	sensor	extension	

•  Learning	multi-view	relationships	
•  Linear	multi-view	relationships	[NSS	2016]	
•  Nonlinear	multi-view	relationships	

•  Clustering	[MLHC	2017,	ISICEM	2019]	
•  Classification	[MLHC	2017,	ISICEM	2019]	
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View	1	 View	2	

Latent	variables	

Unknown	relation	



Canonical Correlation Analysis 

30	

•  Two-view	analogue	to	Principal	Components	Analysis	
•  Learns	subspace	to	maximize	correlation	between	two	views	
[Hotelling	1936]	

• Non-convex	optimization	with	closed-form	solution	
• Gaussian	model	interpretation	[Bach	2006]	

maxu,v corr(X1
Tu,X 2

T v)

Hotelling	(1936).	Relations	between	two	sets	of	variates.	Biometrika.	
Bach	(2006).	A	probabilistic	interpretation	of	canonical	correlation	analysis.	Berkeley	Technical	Report.	



Idea: CCA Anomaly Detection 

• Characterizes	background	
reference	data	by	CCA	
• Checks	when	new	observations	do	
not	match	this	structure	
• Apply	to	imperfect	source	
knowledge	
•  Energy	windows	as	views	
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CCA	

Background	
Spectra,	
Energy	
Window	

Predicted	
Window	

Components	

Not	
Window	

Score	
	=	Sum	of	Error2	

Window	

New	Sample	
Linear	Regression	



Dataset and experimental design 

•  24	hours	spectroscopic	data	in	
one-second	intervals	
•  Synthetic	injections	of	67	source	
templates	
• Binary	classification	of	each	
sample	
• Censored	Energy	Window	
(CEW):	multi-view	baseline	
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Energy	window,	source,	and	background	

Expect	to	see	source	most	clearly	in	energy	window.	



CCA Detection is more robust 

•  True	source	template	missing	
from	library	
• CCA	method	outperforms	MF-
Max,	CEW-Max,	and	PCA	
alternatives	
• We	expect	to	do	worse	than	MF	
and	CEW,	which	have	perfect	
source	information	
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ROCs	with	incomplete	information	



Multiple components aid detection 
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• CCA	Detection	score	is	based	
on	residuals	
• With	injection,	small	residuals	
individually,	but	noticeable	
combined	
• Weaker	correlations	can	even	
be	more	salient	



Key takeaway of imperfect source information 
problem 
Leverage	multiple	linear	correlations	between	views	to	make	detection	
robust	against	imperfect	information,	a	practical	scenario	
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Outline 

• Multi-view	filtering	
•  Single	sensor	method	for	gamma	source	detection	[NSS	2017]	
•  Multiple	sensor	extension	

•  Learning	multi-view	relationships	
•  Linear	multi-view	relationships	[NSS	2016]	
•  Nonlinear	multi-view	relationships	

•  Clustering	[MLHC	2017,	ISICEM	2019]	
•  Classification	[MLHC	2017,	ISICEM	2019]	
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View	1	 View	2	

Latent	variables	

Unknown	relation	



Clustering methods compared 
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Ground	truth	 K-means	or	spectral	clustering	

Modern	multi-view	clustering	[Zhao	2017]	 Multi-view	relationship	clustering	



Our approach 

• Clusters	observations	according	
to	multi-view	relationships	
•  Fits	cluster-wise	linear	
relationships	
•  Relevant	latent	factors	are	
discovered	in	the	process	
•  Latent	factors	vary	between	
clusters	
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o			In	cluster	
x			Out	of	cluster	

Latent	factors,	view	1	
	

In-cluster	data	in	Red	
Other	data	in	Grey	

Cluster	1	 Cluster	2	

Cluster	3	 Cluster	4	
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Mixture of Canonical Correlations 
• How	to	model	different	subsets	of	observations	have	different	
correlations?	
• Generative	model:	

•  Each	cluster	has	a	conditionally	independent	CCA	structure	
• Want	to	learn	both	cluster	labels	and	correlations	
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A	 B	 C	 D	



Canonical Least Squares Clustering (CLS) 

•  Expectation	Maximization-like	iterative	algorithm	
for	CCA	clusters	[Fern	2005]	
•  Theoretical	and	empirical	convergence	problems	
• Replace	CCA	with	novel	optimization	problem,	
Canonical	Least	Squares	(CLS)	
• Non-convex	optimization	

•  Closed-form	solution	in	first	component	
•  Greedy	solution	performs	well	empirically	
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															Epoch	

O
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e	

Canonical	Least	Squares	

Fern	et	al.	(2005).	Correlation	clustering	for	learning	mixtures	of	canonical	correlation	models.	ICDM.	

CCA	Clustering	Loss	



Experiment on synthetic data 

•  10	clusters	of	1,000	points	each	in	R100	

•  Gaussian	
•  All	overlap	at	origin	
•  Features	partitioned	in	half	to	make	two	views	
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CLS	 CCA	 k-means	 Spectral	

Adjusted	Rand	Index	 .99	±	.01	 .94	±	.02	 .005	±	.003	 .000	±	.000	

High-dimensional	version	
of	this	with	10	clusters	

CLS	Clustering	performs	best	



Experiment on induced bleeding 
•  38	anesthetized	pigs		
•  Time	series	of	each	subject’s	
central	venous	pressure	(CVP),	
sampled	at	250Hz	and	
featurized	using	domain	
knowledge	
• Views	correspond	to	CVP	
waveforms	at	the	top	of	
inspiration	and	bottom	of	
expiration	of	the	breathing	
cycle	
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25	min	
stabilization	

25	min	
constant	
bleeding	



Clusters across time and subjects 

• No	explicit	knowledge	of	
bleeding	
• Variation	across	time	reflects	
stages	of	bleeding	response	
• Variation	across	subjects	reflects	
different	phenotypes	
• Our	work	may	be	first	to	
characterize	structure	of	
response	[Pinsky	2005,	Boyd	
2011,	Marik	2013]	
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CLS	clustering	with	4	clusters	

Learned	correlation	structure	
corresponds	with	blood	loss	

Pinsky	and	Payen	(2005).	Functional	hemodynamic	monitoring.	Critical	Care.	
Boyd	et	al.	(2011).	Fluid	resuscitation	in	septic	shock.	Critical	Care	Medicine.	
Marik	and	Cavallazzi	(2013).	Does	the	central	venous	pressure	predict	fluid	responsiveness?	Critical	Care	Medicine.	



Fully supervised clusters 
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Blood	loss	view	 4	clusters	

Refined	clusters	using	bleeding	information.	
Not	same	clusters	as	previous	slide.	



Key takeaway of approach to multi-view 
clustering 
• Novel	algorithm	identifies	clusters	based	on	multi-view	relationships	
• Performs	well	quantitatively	on	synthetic	dataset	and	qualitatively	on	
authentic	bleeding	dataset	
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Outline 

• Multi-view	filtering	
•  Single	sensor	method	for	gamma	source	detection	[NSS	2017]	
•  Multiple	sensor	extension	

•  Learning	multi-view	relationships	
•  Linear	multi-view	relationships	[NSS	2016]	
•  Nonlinear	multi-view	relationships	

•  Clustering	[MLHC	2017,	ISICEM	2019]	
•  Classification	[MLHC	2017,	ISICEM	2019]	
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View	1	 View	2	

Latent	variables	

Unknown	relation	



For	Class	C	with	clusters	j,	example	with	views	x	and	y	is	scored	as	
	
	

where	Uj	and	Vj	are	CLS	loading	matrices	in	cluster	j	

CLS classification 

1.  Learns	CLS	clusters	
independently	on	each	class	

2.  Checks	new	point’s	fit	in	each	
cluster	

3.  Classify	according	to	best	
fitting	cluster	
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Decision:	Class	0	

Nonlinear	multiclass	
generalization	of	CCA	
anomaly	detection	



Moving CLS to supervised classification setting 
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Moving CLS to supervised classification setting 
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Moving CLS to supervised classification setting 
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Classifier performance 

•  Single	cluster	CLS:	CLS	classification	with	one	cluster	
•  Final	CLS:	CLS	classification	with	multiple	clusters	
•  Random	forest:	best	single-view	classifier	
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(95%	C.I.s)	



Different application: Non-intrusive load 
monitoring (NILM) 
• Pipeline	of	event-based	NILM	
•  Event	detection	to	identify	when	
appliances	are	switched	on/off;	
binary	classification	
•  Event	classification	to	identify	
which	appliances	are	switched;	
multiclass	classification	
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Disaggregation	of	power	signals.		
Figure	from	[Zhang	2019]	

Zhang	(2019).	Non-intrusive	load	monitoring.	Web.	



Approach: Multi-view characterization of 
change over time 
•  Transient	changes	in	appliance	state	carry	temporal	correlation	
structures	
•  Fingerprints	of	different	appliances	potentially	discovered	by	clusters	
• Views	are	Past	and	Present	

53	

Figure	from	[Zhang	2019]	



• Chi-squared	goodness-of-fit	(GOF)	test	is	state-of-the-art	[Jin	2011]	

•  H0:	Past	was	drawn	from	same	distribution	as	Present	
•  H1:	Distributions	differ	

•  Test	statistic	has	chi-squared	distribution	
•  Paired	in	order	
•  Gaussian	assumption	

Baseline: Goodness-of-fit method 

54	Jin	et	al.	(2011).	A	time-frequency	approach	for	event	detection	in	non-intrusive	load	monitoring.	Signal		
	Processing,	Sensor	Fusion,	and	Target	Recognition.	

Figure	from	[Zhang	2019]	



Event detection experiment 

• BLUED	[Filip	2011]	
•  Power	from	houses	with	multiple	
appliances	
•  Frequently	used	in	benchmarking	
•  12kHz	power	over	7	days	with	
labeled	events	

•  Featurization	by	discrete	Fourier	
transform	of	each	window;	top	5	
principal	components	

Filip	(2011).	BLUED:	A	fully	labeled	public	dataset	for	event-based	non-intrusive	load	monitoring	research.		
	Workshop	on	Data	Mining	Applications	in	Sustainability.	 55	

FPR	at	certain	levels	of	TPR	

ROCs	for	event	detection	

Results	statistically	significant.	

TPR	 80%	 85%	 90%	 95%	 98%	

GOF	on	power	 .10%	 .15%	 .50%	 .81%	 5.5%	

CLS	on	Fourier	 .08%	 .09%	 .26%	 .67%	 3.92%	



Event classification experiment 
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Mostly	statistically	significant.	

•  Varied	the	threshold	of	events	for	a	class	to	be	included.	
•  Compared	to	Random	Forest	(RF),	the	best	baseline.	



Scores of two examples, one a mistake by 
random forest 
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Features of two examples 

Multi-view	relationship	is	similar	between	examples.	
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A tree that makes a mistake 

Each	node	only	uses	one	view.	 59	



Features of the mistaken class 

Tree	misclassifies	example	as	Class	65	because	it	neglects	the	multi-view	relationship.	
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Key takeaway of approach to multi-view 
classification 
Leverage	multi-view	relationships	as	discriminative	factors	in	
classification	to	perform	well	on	bleeding	and	load	monitoring	datasets	
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Multi-view relationships for analytics and inference 
Summary 

• Operated	on	multi-view	relationships	as	a	unit	of	analysis,	resulting	in	
novel	structure	and	good	empirical	performance	
•  Single	sensor	method	for	gamma	source	detection	
• Multiple	sensor	extension	with	known	relationship	
•  Linear	multi-view	relationships	
• Nonlinear	multi-view	relationships	

•  Clustering	
•  Classification	

• Multi-view	approach	to	learning	on	distributions	
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Multi-view relationships for analytics and inference 
Future work 

• Regression	
• Multi-modal	data	
• Arbitrary	nonlinear	relationships	

•  Mutual	information	instead	of	correlation	
•  Kernel	CCA	[Shotaro	2006]	and	Deep	CCA	[Galen	2013]	

•  Theory	to	explain	performance	of	CLS	clustering/classification	
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Thank you 
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Appendix 
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More than two views 

• Generalized	CCA	[Horst	1961]	finds	shared	representation	G	between	
all	views	

• Other	extensions	of	CCA	loss	could	be	sum	or	minimax	over	pairwise	
loss	
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Horst	(1961).	Generalized	canonical	correlations	and	their	applications	to	experimental	data.		
								University	of	Washington,	Seattle.	
Benton	(2017).	Deep	generalized	canonical	correlation	analysis.	arXiv	preprint.	



Adaptive Filtering to Set Up Kalman Filter 

•  KF	is	very	sensitive	to	the	hyperparameters		and		
•  An	adaptive	KF	assumes	they	are	non-stationary	and	estimates	them	in	real-time	

•  Bayesian,	MLE,	covariance	matching,	correlation	
•  Often	computationally	expensive	

• We	propose	a	simple	method	that	functions	well	for	this	problem	
	
	
	

where		is	a	Gaussian	filter	with	length		and	variance		
•  Disadvantage	1:	Introduces	additional	uncertainty	
•  Disadvantage	2:	Requires	a	short	burn-in	period	(	measurements)	
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Prediction approaches 

•  Estimated	background	is	detection	score	
•  Insert	background	estimates	into	other	methods	

•  Matched	Filter	maximizes	signal-to-noise	ratio	and	is	given	by:	

				for	spectra	X	and	threat	template	s	
•  Use	past	k	estimates	of	background	to	get	current	covariance?	No	
•  														à																	where						is	current	estimated	background	
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h = cov(X )−1s

cov(X ) diag(xt ) xt



Hypotheses restricted to pass area 
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BA	and	BAF	look	for	source	in	intersection	of	sensor	paths.	



ROC statistics for multi-view filtering 
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Confidence	intervals	from	bootstrapped	passes.	



Evaluating the Kalman Filter with Training-Test 
Mismatch 

•  The	Kalman	filter	does	not	require	training	data,	but	other	
methods	usually	do	

•  It	may	be	naïve	to	assume	that	training	data	match	test	data	
•  To	induce	mismatch	between	training	and	test	background,	
test	spectra	were	shifted	to	higher	energy	bins,	similar	to	an	
extreme	form	of	gain	drift	

•  We	compared	several	methods:	
•  Oracle:	Likelihood	ratio	using	exact	background	rates	and	

intensity	
•  Optimal	GP:	GP	with	perfect	prior	
•  Kalman	GP	(KGP):	GP	with	prior	set	by	KF	
•  Moving	Average	GP	(MA	GP):	Like	KGP	but	with	simple	moving	

average	
•  GP:	GP	method	with	prior	set	by	training	data	
•  Naïve	KGP:	KGP	with	non-adaptive	covariance	hyperparameters	

estimated	from	training	data	
•  Intensity:	Intensity	estimated	by	KF	
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Examining Estimated Intensity and Scores 

	
	
	
	
•  Estimates	of	intensity	were	compared	to	the	true	intensity,	which	spiked	when	the	detector	moved	near	the	source	
•  Intensity	and	KGP	scores	tracked	the	true	intensity	well	with	low	lag	
•  There	were	not	large	spikes	when	there	was	no	source		
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Alternative Circumstances of Source 
Detection 
•  If	we	do	not	know	what	threat	
design	to	expect,	we	can	use	
Spectral	Anomaly	Detection	(SAD	
or	PCA)	(Tandon	2016).	
•  If	we	have	perfect	knowledge	of	
the	shape	of	threat	spectrum,	we	
can	use	a	Matched	Filter	(MF)	
(Tandon	2016)	
•  In	practice,	we	often	have	an	idea	
of	what	threat	to	expect,	but	our	
knowledge	of	it	is	usually	imperfect	
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Alternative Circumstances of Source 
Detection 

•  If	we	can	predict	the	variety	of	
possible	threat	templates	and	
form	a	library	of	threat	
templates,	we	can	use	
marginalized	version	of	
Matched	Filter,	i.e.,	MF-Max	
•  It	would	work	as	well	as	MF	if		
marginalization	always	correctly	
picked	the	right	threat	template	
to	use	
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MF-Max	

ROCs	for	one	particular	threat	template.	
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Simulations with Imperfect Information 
•  We	compare	MF-Max,	CEW,	and	CCA	where	we	marginalize	over	a	threat	library	that	does	not	
contain	the	actual	threat.	

•  Our	CCA	method	yields	improved	performance	closer	to	the	optimal	information	case.	
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ROCs	for	a	single	threat	

CCA	

CCA	

ROCs	for	a	different	threat	
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Changing the Energy Window Quality 

1.  Compute	global	average	threat	template	
2.  Compute	convex	combinations	of	average	template	and	actual	template	
3.  Find	energy	windows	of	combination	templates	and	pass	to	CEW	and	CCA	
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Global	average	window	 Optimal	individual	window	Combination	window	



Changing the Energy 
Window Quality 

•  FPR	for	each	method	as	the	
window	changes	from	low-
quality	to	optimal	

•  As	information	about	the	
threat	spectrum	decreases,	
the	performance	of	CEW	
degrades	and	becomes	much	
worse	than	CCA	

•  (Other	methods	do	not	use	a	
window)	
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Global	average	
window	

Optimal	individual	
window	

0.11	difference	

Average	FPR	over	67	threats.	
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Existing approaches include CCA 
•  A	common	approach	is	component	analysis,	such	as	
Canonical	Correlation	Analysis	(CCA),	which	fits	a	linear	
correlation	model	between	two	views	
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View	1	 View	2	



Restaurant example 

•  Restaurant	characterized	only	by	price	
•  Review	characterized	only	by	score	
•  Two	kinds	of	reviewers:	adults	and	
kids	
•  A	reviewer’s	score	is	a	monotonic	
function	of	price	
•  Increasing	in	price	for	adults	
•  Decreasing	in	price	for	kids	

• We	observe	restaurant	price	and	
review	score	but	not	the	type	of	
reviewer	
•  (One	variable	per	view	in	this	
example,	but	usually	multivariate)	
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Restaurant example (cont.) 

• Given	restaurants	and	reviews,	
task	is	to	identify	the	
relationship	between	them	
•  Since	there	are	two	populations	
of	reviewers,	this	relationship	
varies	
•  Existing	approaches	like	CCA	
may	struggle	because	they	only	
search	for	global	linear	structure	
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Roadmap to our approach 

PCA	
81	

CCA	

CLS	clustering	
	

CLS	

CLS	classification	
	



Principal components analysis and canonical 
correlation analysis 

PCA	
• Analyzes	directions	of	maximum	
variance	in	a	single	view	
• Decomposes	view	into	linear	
combinations	of	variables	
•  Finds	multiple	orthogonal	
loadings	
• Components	are	ranked	by	
contribution	to	variance	

CCA	
• Analyzes	directions	of	maximum	
correlation	between	two	views	
• Decomposes	each	view	into	
linear	combinations	of	variables	
•  Finds	multiple	orthogonal	
components	
• Components	are	ranked	by	
contribution	to	covariance	
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•  Non-convex	optimization	with	closed-form	solution:	
	
•  XTu	and	YTv	are	latent	factors	called	canonical	variables	
•  The	solution	for	u	is	the	leading	eigenvector	of	

				and	similarly	for	v	
•  There	are	multiple	components:	the	mth	factor	can	be	found	by	solving	

Formal statement of CCA 
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Recap of the linear approach 
•  A	common	approach	is	component	analysis,	such	as	Canonical	
Correlation	Analysis	(CCA),	which	fits	a	linear	correlation	
model	between	two	views	

•  However,	CCA	might	struggle	if	the	correlations	are	nonlinear	
or	non-global	
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Mixture of CCA optimization 

•  This	(simplified)	optimization	problem	looks	like	

• R	is	cluster	labels	
• X(j)	and	Y(j)	are	subsampled	data	matrices	of	cluster	j	
• PSD	objective	in	u,v	but	quadratic	constraints	
• Alternative	way	of	writing	CCA	that	looks	like	least-squares	
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•  CLS	is	our	alternative	to	CCA	that	is	better	for	clustering	
• Minimizes	squared	error	in	latent	space:	

•  PSD	objective	and	quadratic	constraint	
•  data-agnostic	 	 	 	instead	of	

•  Still	has	closed-form	solution:	v	is	the	lowest	eigenvector	
of														and	 	 	 	 	 	 	

					
				where 	 	 	 	 	 	 					
•  Lowest	eigenvector	corresponds	to	minimizing	variance	of	
a	regression	residual	

Canonical Least Squares 
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•  Like	CCA,	CLS	can	find	multiple	components	
•  PSD	objective	and	quadratic	constraints:	

•  No	known	closed-form	solution	
•  Constraint	prevents	0	solution,	does	not	normalize	scale	
•  Sensitive	to	scale,	so	usually	standardize	data	

• We	solve	for	components	V	via	a	greedy	sequential	
approximation	by	taking	V	to	be	the	lowest	eigenvectors	
of 	 	 			
•  CCA	was	a	multiple	correlation	problem,	while	CLS	is	a	
multi-output	regression	problem	

Multiple CLS components 
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Convergence 

• When	number	of	components	m	=	1,	algorithm	is	guaranteed	to	
converge	
•  Objective	decreases	at	every	step	
•  For	some	problems,	first	component	is	most	meaningful	

•  For	higher	m,	the	algorithm	does	not	necessarily	converge	because	of	
greedy	approximation	
•  Empirically	not	a	problem	

88	



Analyzing blood loss with CVP 
•  Dataset	contains	time	
series	of	each	pig’s	central	
venous	pressure	(CVP),	
blood	pressure	near	right	
atrium	of	heart	
•  Each	waveform	is	from	
either	inspiration	or	
expiration	phase	of	
respiration	
•  Thirteen	features	were	
extracted	from	each	
waveform	as	averages	and	
ratios	between	different	
points	of	the	CVP	
waveform	
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Unsupervised setting: correlating inspiration 
and expiration waveforms 

• We	consider	inspiration	and	expiration	as	the	views	
• We	expect	the	correlations	to	still	depend	on	
bleeding,	which	is	unobserved	
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Unsupervised latent variables 
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Cluster	1	 Cluster	2	

Cluster	3	 Cluster	4	

The	latent	variables	resemble	blood	loss.	

—	First	component	
—	Second	component	
—	Third	component	
—	Fourth	component	
	



Supervised classification setting: correlating inspiration and 
expiration with knowing whether bleeding had started 

•  Task:	decide	whether	a	pair	of	waveforms	came	from	before	or	
after	onset	of	bleeding	
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Cluster assignments for test pigs 

We	identified	pre-bleeding	and	post-bleeding	clusters,	which	are	
usually	distinct.	The	predominant	pre-bleeding	cluster	is	light	green.	
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No data 

Unsupervised	
(4	clusters)	

No data 

Supervised		
(3	clusters	non-bleeding,	5	clusters	bleeding)	



Waveform analysis 

•  We	analyze	the	impact	of	waveform	features	by	analyzing	the	gradient	of	
classification	score	

•  Left:	Our	model	predicts	that	shrinking	the	marked	lengths	is	correlated	with	
bleeding	in	a	pre-bleeding	observation.	

•  Right:	The	corresponding	lengths	have	shrunk	in	a	post-bleeding	observation.	
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Global regression model for single-view data 
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• Reduced-rank	regression	(RRR)	is	a	multi-output	regression	method	
	
	
• Has	closed-form	solution	using	eigendecomposition	of	XBOLS	
• Also	can	be	written	
	
		 	 	 	 		X									Z									Y	

Low-rank	latent	space	links	inputs	and	outputs	

U	 V	

rank	r	



Global regression model for multi-view data 
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•  Inputs	and	coefficients	are	partitioned	into	G	views		
• Want	each	BG		to	be	“low	rank”	–	group-wise	low	rank	constraint	

•  ||M||*	is	nuclear	norm,	the	sum	of	singular	values,	a	convex	
relaxation	of	rank	
•  Exploits	multi-view	structure	because	each	view	connects	to	a	
separate	low-rank	latent	space	



MoE with iRRR 

• Nuclear	norm	regularization	corresponds	to	a	prior	on	expert	
parameters	
• However,	we	are	unsure	if	there	is	a	valid	probability	distribution	that	
leads	to	the	nuclear	norm	penalty	
• We	use	a	pseudo-distribution	that	suffices	mathematically	

•  From	here,	EM	is	straightforward	
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Multi-view relationships in sets of points 

•  iRRR	does	not	use	relationships	between	views	
• We	propose	to	use	these	relationships	by	weighting	experts	based	on	
correlation	structure	
• Correlations	are	only	defined	on	sets	of	points,	so	we	assume	the	
observations	are	already	partitioned	
• All	points	in	a	partition	are	given	the	same	expert	weights	
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