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Abstract
Consider a scenario in which there are multiple employers
competing to hire the best possible employee. How does the
competition between the employers affect their hiring strate-
gies or their ability to hire one of the best possible candidates?
In this paper, we address this question by studying a general-
ization of the classical secretary problem from optimal stop-
ping theory: a set of ranked employers compete to hire from
the same random stream of employees, and each employer
wishes to hire the best candidate in the bunch. We show how
to derive subgame-perfect Nash equilibrium strategies in this
game and analyze the impact the competition has on the qual-
ity of the hires as a function of the rank of the employer. We
present numerical results from simulations of these strategies.

1 Introduction
The secretary problem (Ferguson 2012; Freeman 1983) is
a classical problem in optimal stopping theory, and can be
formulated as follows: An employer wishes to hire a sin-
gle employee out of a pool of n totally ordered candidates.
The applicants are interviewed in a random order. Immedi-
ately after each interview, an irrevocable hiring decision is
made. The decision is made knowing only how that candi-
date compares to all candidates that have been interviewed
up to that point, but not how he compares to future candi-
dates. Moreover, an applicant that has been rejected cannot
be later hired. It is well known that if the goal of the em-
ployer is to maximize the probability of hiring the very best
of the n candidates, then her optimal strategy is to wait until
she has seen roughly an e−1 fraction of the applicants, and
then hire the first one better than the best she has seen so far.

In this paper, we consider a version of this problem in
a competitive setting. Consider, for example, multiple top
computer science departments all considering the same set
of faculty candidates, and competing to hire them. This
changes the problem from one of decision theory to one of
game theory, and raises the following questions: What are
the optimal strategies of the employers in equilibrium? How
well do the employers and applicants do in the presence of
this competition?

We explore these questions in the context of the following
stylized model: There are k totally ordered employers and
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n totally ordered applicants. The relative ranks of the appli-
cants are initially unknown to the employers. The applicants
arrive one by one in a random order and at the moment they
arrive all the employers learn their rank relative to all ap-
plicants that have arrived earlier. As each applicant arrives,
any number of the employers may choose to make her an
offer. Again these decisions are irrevocable; there is no pos-
sibility of making her an offer later. Since the employers are
totally ranked, an applicant that receives multiple offers will
accept the offer from the highest ranked employer among
those making her an offer. We assume that each employer
wants to hire only one person, so once he has successfully
hired, he will make no further offers.

We consider two possible objectives for the employers.
The first is when each employer is trying to maximize the
probability of hiring the very best applicant. In Section 4, we
use dynamic programming to find a subgame-perfect Nash
equilibrium for this game. A set of strategies is a subgame-
perfect Nash equilibrium if (a) it is a Nash equilibrium—that
is, each employer’s strategy is a best-response to the strate-
gies used by the other employers (note that the applicants’
strategies are trivial: they simply accept the best offer they
receive)—and (b) it remains a Nash equilibrium with respect
to each subgame, the game that remains after m applicants
have arrived, for each m.

Consider, for example, the case where k = 2, in which
exactly two employers, say I and II, are competing for the
best candidate. The strategy of employer I, the top-ranked
employer, is simple: he just runs the standard secretary al-
gorithm, since offers made by employer II would always be
rejected in favor of offers from employer I. Employer II, on
the other hand, must take employer I’s strategy into account.
It turns out that the best (subgame-perfect) response for em-
ployer II in the limit is to wait until an e−3/2 fraction of
the candidates have been interviewed, and then make offers
to any candidate better than the best seen so far, until em-
ployer II successfully hires someone. (Employer II’s first
offer might be to the same person employer I makes an of-
fer to, so II might end up making 2 offers.) Also, just as the
top employer has probability e−1 of success (the same as the
fraction of candidates he interviews before considering any
offer), the probability that II successfully hires the best ap-
plicant is in fact e−3/2. More generally, the lower the rank
of the employer, the earlier they will start making offers and,



of course, the lower their probability of success.
The second objective we consider is when, for each j,

the j-th ranked employer seeks to hire any one of the top j
applicants. In Section 5, we show how to find a subgame-
perfect Nash equilibrium for this objective. Specifically,
we show that the structure of the unique subgame-perfect
equilibrium strategies used is the following: Consider, say
the j-th ranked employer. Then there is a set of numbers
α1 > α2 > · · · > αj between 0 and 1 such that employer
j will attempt to make an offer to the i-th best applicant
so far or better after an αi fraction of applicants have been
seen. However, these thresholds vary over time, depend-
ing on whether higher ranked employers have already hired
someone or not. After higher-ranked employers have hired,
the thresholds increase, i.e., an employer’s standards go up
as applicants are snapped up by higher ranked employers
and competition from these employers has ceased.

For each of the solutions we find, we present numerical
results of simulations.

2 Related Work
The secretary problem and its solution first appeared roughly
sixty years ago (Flood 1958; Gardner 1966). They are well-
known and have been discussed in many literature reviews
(Freeman 1983; Ferguson 1989). The optimal strategy and
proof of its optimality can be derived in many ways. For
instance, it may be derived through a direct probabilistic
proof (Ferguson 2012). Additionally, one could use a new
algorithm called the Odds algorithm, which more generally
computes optimal strategies for a variety of optimal stopping
problems (Bruss 2000).

There is an abundance of research on generalizations and
extensions of the secretary problem. Optimal strategies have
been found for the non-competitive case where a single per-
son wishes to hire one of the top few applicants (Frank and
Samuels 1980). Other authors have considered this latter
setting as well while limiting the possible strategies to those
that use at most two thresholds; these yield a very good ap-
proximation to optimal (Dietz, van der Laan, and Ridder
2011). Separately, a competitive environment has been in-
troduced in which multiple identical employers try to hire
the best applicant, but the applicants cannot distinguish be-
tween the employers (Immorlica, Kleinberg, and Mahdian
2006). So when multiple offers are received, the applicant
accepts one at random. Thus, the equilibrium strategies for
all employers are the same, but with timing shifted earlier
and earlier as the number of employers grows. Another vari-
ant has been considered in which only the second-best appli-
cant is desired (Vanderbei 1980). The author gives the exact
optimal probability of success for even n and shows that it
approaches 1/4 for large n.

3 The Game
We summarize the game to be studied: There are k employ-
ers and n applicants. The n applicants arrive one at a time
in a random order. We make two key assumptions:

1. The applicants are of unknown but strictly comparable
quality.

2. All applicants rank the employers in the same way, and
this ranking is publicly known.

We refer to the j-th ranked employer as employer j.
As each applicant arrives, any employer who has not yet

hired anyone can decide to make that applicant an offer.
These offers are made simultaneously. If the applicant re-
ceives one or more offers, she will choose the employer with
the best ranking.

An employer strategy specifies, for each applicant i, given
the relative ranking of applicants 1 through i, whether or
not to make an offer to that applicant (assuming no previ-
ous offer made was accepted). The optimal strategy for an
employer depends on the strategies employed by the other
employers.

The two games we consider differ in the payoff struc-
ture. In both games, we consider only strategies that are
in subgame-perfect Nash equilibrium. The key observation
that enables us to compute these strategies is that they can
be computed inductively. This is because employer j has
competition only from employers 1 through j−1. Thus, the
top-ranked employer does not need to consider competition
at all, and simply runs the optimal strategy. Given this strat-
egy, the optimal strategy for the second-ranked employer can
be computed, and so on, yielding a set of strategies in equi-
librium.

Remark: For brevity, we will sometimes refer to the opti-
mal strategies in subgame-perfect Nash equilibrium simply
as ”optimal strategies”.

4 Hiring Only the Best
This section derives the subgame-perfect Nash equilibrium
strategies in the competitive setting in which every employer
wants to hire only the top-ranked applicant. In other words,
the value of the game to an employer is 1 if they hire the
top-ranked applicant, and 0 otherwise. A particular set of
strategies, one per employer, yields a certain probability of
success to that employer, the probability of successfully hir-
ing the best applicant.

It will be convenient, rather than talk about the probability
of success, to talk about the probability of failure of a class
of strategies. This is called the risk of a class of strategies.

Solution via Dynamic Programming
Let Rj(i) be the optimal risk, or minimum probability of
failure, for employer j among rules that reject the first i ap-
plicants, assuming that (a) the j−1 higher ranked employers
are using their optimal strategies, and, (b) none of these j
employers have hired from the first i applicants. This func-
tion depends implicitly on n. Given an integer T between 0
and n, define threshold strategy T to be the following: reject
the first T applicants and then make an offer to any applicant
better than all applicants seen so far. Note that an employer’s
offer could be rejected in favor of a higher-ranked employer,
in which case the employer continues to make offers to ”best
so far” applicants.

Theorem 1. For each n and each j between 1 and k, there
is a unique number Tj , the optimal threshold, such that em-



ployer j’s optimal strategy in equilibrium is to play thresh-
old strategy Tj . Furthermore, Tj is given by

Tj = min{i : Rj(i) ≥ 1− i

n
} − 1.

Additionally, Tj−1 ≥ Tj for all j. (Define T0 = n.)

Proof. We induct on k. The proof of the base case (k = 1)
is a special case of the proof of the induction step below.
Hence, for brevity, we omit it.

Suppose the theorem holds for 1, 2, . . . , k − 1, and that
employers 1 through k − 1 are playing their optimal strate-
gies. (For k = 1, this assumption is vacuous.) We derive
player k’s best response by backwards induction. Suppose
for now that none of the employers has hired any of the first
i applicants. By hypothesis Tk−1 ≤ Tk−2 ≤ · · · ≤ T1.
For employer k, there are two cases. When i ≤ Tk−1, the
employer has the option of making an offer to the i-th ap-
plicant if the applicant is ranked best so far. (Obviously, no
employer would ever make an offer to an applicant that is
not best so far.) In this case we have

Rk(i− 1) =
1

i
min{Rk(i), 1− i

n
}+ (1− 1

i
)Rk(i) (1)

This is because there is a 1/i chance that the i-th applicant
is the best so far. If it is, the chance that it is the best overall
is i/n, the probability that the best overall is in the first i. So
the risk of making an offer is 1− i/n. Thus the optimal risk
is the minimum of 1 − i/n and Rk(i), the risk of rejecting
the i-th applicant. If the i-th is not the best so far, the optimal
risk is simply Rk(i).

When i > Tk−1, employer k cannot hire an applicant
ranked best so far because a higher ranked employer will
also make an offer, and their offer will be successful. In this
case we have

Rk(i− 1) =
1

i
Rk−1(i) + (1− 1

i
)Rk(i). (2)

This is because in the 1/i chance that i is the best so far,
some higher-ranked employer will hire. Then the optimal
risk becomes Rk−1(i) because there are only k− 1 employ-
ers looking to hire among employers 1 through k, so any
strategy used by employer k after this hire would have an
identical outcome to the same strategy used by employer
k − 1 when no one has hired. If the i-th applicant is not
best so far, the risk is simply Rk(i).

Let T be given by

T = min{i : Rk(i) ≥ 1− i

n
} − 1. (3)

Note that T exists since Rk(n) = 1.
For all k > 1, employers k and k − 1 have access to

the same set of strategies and receive identical outcomes for
the same strategy, except for situations in which they both
make an offer to the best overall applicant and only employer
k − 1’s is accepted. Therefore, Rk(i) ≥ Rk−1(i), so if
Rk−1(i) ≥ 1 − i/n, then Rk(i) ≥ 1 − i/n. It follows that
T ≤ Tk−1. (This fact is trivial for k = 1.)

It can be seen from (1, 2) that Rk is nondecreasing, while
1 − i/n is decreasing. Therefore, Rk(i) ≥ 1 − i/n for all

i > T , and Rk(i) < 1 − i/n for all i ≤ T . When the i-
th applicant is best so far, the chance of success of hiring is
higher than the best chance by rejecting if and only if i > T .
It follows that there is a unique optimal strategy, namely the
threshold strategy Tk = T .

We have shown that threshold strategy T is optimal at any
index i such that none of employers 1 through k has hired
any of the first i applicants. It remains to be shown that
this holds when ` of these employers have hired, for every
1 ≤ ` < k. When ` employers have hired, there are exactly
k− ` employers looking to hire among employers 1 through
k. Then any strategy used by employer k after these hires
would have an identical outcome to the same strategy used
by employer k−`when no one has hired. So it is optimal for
employer k to play threshold strategy Tk−`. The most recent
hire was made at an index i ≥ Tk−` ≥ T since Tk−` is the
first index at which ` employers potentially make offers. If
employer k was already playing T before these hires, then
there is no difference in switching to Tk−`. Therefore, T is
optimal.

The dynamic program and thresholds can be numerically
computed by the following algorithm.
T0 ← n
for j = 1, . . . , k do

Rj(n)← 1
for i = n− 1, . . . , 0 do

if i ≤ Tj−1 then
Rj(i)← value from (1)

else
Rj(i)← value from (2)

end if
end for
Tj ← value from (3)

end for
For each j, the algorithm takes Θ(n) time to compute

Rj and O(n) time to compute Tj . Therefore, the algorithm
takes Θ(kn) time.

Probability of Success Equals Threshold
Next, we show that, as n approaches infinity, the probabil-
ity that an employer hires the best applicant approaches the
optimal threshold as a fraction of n. The following theo-
rem and proof is analogous to Theorem 1 in a related paper
(Immorlica, Kleinberg, and Mahdian 2006).
Theorem 2. Let Tj be the optimal threshold for the j-th
employer in equilibrium, as determined by Theorem 1. Then

lim
n→∞

Pr (j hires best) = tj := lim
n→∞

Tj
n
.

Proof. Fix j. Assume employers 1 through j − 1 use their
optimal thresholds t1, . . . , tj−1. Let t be the threshold used
by employer j, not necessarily tj . Let f(t) denote the prob-
ability that employer j hires the best applicant using thresh-
old t. We show below that there is a constant C such
that f(t) = t log(1/t) + Ct when t ∈ (0, tj−1]. Since
tj = arg max f(t) and tj ∈ (0, tj−1], we have

0 = f ′(tj) = log(1/tj)− 1 + C = f(tj)/tj − 1



so f(tj) = tj .
We now prove that f(t) = t log(1/t) + Ct when t ∈

(0, tj−1]. In the discrete setting, the probability that em-
ployer j hires the best by the Tj−1-th applicant using strat-
egy T is

Tj−1∑
i=T+1

1

n

T

i− 1
=
T

n

Tj−1∑
i=T+1

1

i− 1

which corresponds to the integral

T

n

∫ Tj−1

T

dx

x− 1
.

Using a change of variable x = nu, we get

T

n

∫ Tj−1/n

T/n

dx

x− 1/n

Let n → ∞, T/n → t, and Tj−1/n → tj−1. The proba-
bility that employer j hires the best before time tj−1 using
strategy t is

t

∫ tj−1

t

dx

x
= t log(1/t)− t log(1/tj−1).

We now must compute the probability that employer j hires
the best after time tj−1, an event we denoteA. LetB denote
the event that employer j does not hire before tj−1, which
occurs if and only if employer j does not hire between t and
tj−1. Since A implies B, we have Pr(A) = Pr(A,B) =
Pr(B) Pr(A|B). Now B occurs if and only if the best ap-
plicant before tj−1 comes before t, so Pr(B) = t/tj−1.
Next, assume B occurs. Then A is independent of t because
the information that employer j does not hire between t and
tj−1 is the same as the information that employer j does not
hire before tj−1. That is, assuming B occurs, employer j’s
strategy appears identical for any t ≤ tj−1. This implies that
Pr(A|B) is independent of t. Therefore, Pr(A) = C ′t for
some C ′ independent of t. Finally, f(t) = t log(1/t) + Ct,
where C = C ′ − log(1/tj−1).

Numerical Results – Best Only
Table 1 shows the optimal thresholds for ten employers in
subgame-perfect Nash equilibrium with competition when
the objective is to hire the best applicant. To obtain the re-
sults in the far right column, by adapting our model to a
continuous setting, we were able to derive the thresholds for
the top employers in the limit as n tends to infinity. For ex-
ample, the thresholds for the top 4 employers derived in this
way are e−1 ≈ 0.368, e−3/2 ≈ 0.223, e−47/24 ≈ 0.141 and
e−2761/1152 ≈ 0.091. Note that, by Theorem 2, the num-
bers in the far right column are also equal to the limiting
probability of success.

5 Hiring At or Above Employer Rank
In this section we develop a dynamic program for finding the
subgame-perfect Nash equilibrium strategies in the compet-
itive setting in which every employer j wants to hire one of

Employer Threshold Threshold Threshold
Rank (n = 10) (n = 50) (n→∞)

1 3 18 .368
2 2 11 .223
3 1 7 .141
4 1 4 .091
5 1 3 .059
6 1 2 .039
7 1 1 .026
8 1 1 .017
9 0 1 .012
10 0 1 .008

Table 1: Thresholds for ten employers when hiring best ap-
plicant in subgame-perfect Nash equilibrium with competi-
tion. The right column shows the values tj (see Theorem 2).

the top j applicants. In other words, the value of the game
to employer j is 1 if they hire one of the top j-ranked appli-
cants, and 0 otherwise.

As we shall see in detail in the next section, the optimal
equilibrium strategies in this setting are quite a bit more
complicated. In particular, the strategy for an employer at
time t depends on precisely which of the higher ranked em-
ployers have already hired at that time. Given this informa-
tion, the optimal strategy specifies a set of j threshold times
at which this employer becomes less and less selective: after
the first threshold time, he will only hire the best so far, after
the second, he will only hire one of the top two so far and so
on.

Numerical Results – Top j
We begin with some numerical results about the optimal
strategies in equilibrium. In the next section, we explain
the derivation of these strategies.

Hiring Status Employer Rank
1 2 3

No hires .368 .246 .189
.559 .413

.635
Emp 2 has hired .368 .258

.507

.727
Emp 1 has hired .347 .239

.667 .475
.677

Emps 1 and 2 have hired .337
.587
.775

Table 2: Thresholds for three employers when hiring at
worst own rank in subgame-perfect Nash equilibrium with
competition.

Table 2 shows the optimal thresholds for three employers
in the subgame-perfect Nash equilibrium with competition



as fractions of n as n approaches infinity, when employer j
tries to hire one of the best j applicants. Up to three values
are listed in each box. The first corresponds to the threshold
for hiring the relative best, the second to hiring the second
relative best, and the third to hiring the third relative best.

For example, consider the thresholds for the rank 3 em-
ployer when no one has hired. After .189n applicants have
passed, the rank 3 employer should make an offer to any new
applicant that is the best so far. Similarly, after .413n appli-
cants, he should also offer to the second best so far. After
.635n, he should also offer to the third best so far. However,
this strategy may need to change if a hire is made by another
employer. For instance, if the rank 2 employer hires some-
one, then these thresholds should be abandoned, and instead
the rank 3 employer should use .258n, .507n, and .727n.

Figure 1: Probabilities of success for each employer using
different strategies in various settings.

Figure 1 shows, for each employer in ranks 1 through 7,
the probability of hiring an applicant of same or better rank
for three different strategies: The highest curve is the proba-
bility of success using the optimal strategy in the absence of
any competition. The second highest curve is the probability
of success using the subgame-perfect Nash equilibrium with
competition. The lowest curve shows the simulated proba-
bility of success using the optimal strategy that ignores com-
petition, but in the presence of competition, for very large n.
This figure shows very clearly how important it is to take the
competition into account.

Table 3 shows the simulated distributions of the true ranks
of hired applicants when all employers use the optimal equi-
librium strategies, for very large n. For example, the rank
2 employer has a 19.1% chance to hire the best appli-
cant, 22.6% chance to hire the second best applicant, 28.6%
chance to hire the third best or worse applicant, and a 29.4%
chance to hire no one. It is interesting to contrast this to em-
ployer 2’s outcome when he attempts to hire only the best,
that is, ”move up in the world”. As we saw earlier, in this lat-
ter case, his probability of hiring the best applicant is higher,
in fact 22.3%, but this comes at the expense of being less
likely to hire the second best, at 9.9%, and being more likely
to hire nobody, at 44.2% (probabilities not shown in table).

Hired Employer Rank
Rank

1 2 3 4 5 6
1 38.1 19.1 11.8 7.4 4.1 2.6
2 22.9 16.8 12.1 8.0 5.6
3 18.3 14.9 10.9 7.8
4 14.5 14.4 10.3
5 13.5 12.7
6 12.4

> own 25.5 28.6 28.1 28.5 29.7 29.8
none 36.4 29.4 25.1 22.7 19.3 18.6

Table 3: Simulated distribution of hired applicants when hir-
ing at worst own rank in subgame-perfect Nash equilibrium
with competition.

The Dynamic Program
Notation and Definitions: Given k employers and n ap-
plicants, at any point in time in the game, let xj be the indi-
cator variable for whether employer j has hired an applicant.
Let x = (x1, . . . , xk) be known as the hiring status. The op-
timal strategy for each employer depends on x, meaning it
may change with time if another employer makes a new hire.

We now define several functions that all depend implicitly
on n. Let the optimal risk Rj(i, x) be the minimum proba-
bility that employer j fails to get one of the top j applicants
among all strategies that reject the first i applicants, given x
when the i-th applicant arrives. We say Rj is defined only
when xj = 0. Let ri be the rank of the i-th applicant, and let
rri be the relative rank of the i-th applicant, meaning its rank
relative to the first i applicants. As in the previous section,
our derivation of the optimal strategy for j assumes that em-
ployers 1 through j−1 are playing their optimal equilibrium
strategies.

There are three auxiliary functions. Let HRR(i, j, x) be
the highest relative rank of applicant i that would be hired
by one of employers 1 through j who has not hired yet un-
der x, according to optimal strategies. Let HRR equal 0
if there is no such applicant. Let AE(i, t, j, x) (accepted
employer) be the rank of the employer who would offer to
applicant i with relative rank t and be accepted, who has not
hired yet under x, and whose employer rank is j at most.
Let NX(i, t, j, x) (new x) be a copy of x but with a 1 at
index AE(i, t, j, x). Then NX(i, t, j, x) is the new hiring
status after applicant i is hired. Note that t ≤ HRR(i, j, x)
implies that AE(i, t, j, x) and NX(i, t, j, x) exist.

Solution: Our aim is to computeRj(0,0), the optimal ini-
tial probability of success for employer j. We start by com-
puting the probability that the i-th applicant has worse rank
than c conditioned on its relative rank. This probability fol-
lows the cumulative hypergeometric distribution,

Pr(ri > c|rri = t) =

t∑
m=0

(
c

m

)(
n− c
i−m

)/(n
i

)
because we sum the probabilities of all ways in which the
first i applicants contain m ≤ t of the top c applicants. This
quantity is nonincreasing in i.



The next lemma describes a dynamic program to compute
Rj . The program must be computed with i decreasing from
n to 0 and with the number of 1’s in the first j indices of
x decreasing from j to 0. Additionally, the Rj’s must be
computed with increasing j.
Lemma 3. Let s = HRR(i, j − 1, x). We have

Rj(i− 1, x)

=
1

i

{
s∑

t=1

Rj(i,NX(i, t, j − 1, x))+

i∑
t=s+1

min{Rj(i, x),Pr(ri > j|rri = t)}

}
with initial condition Rj(n, x) = 1.

Proof. The optimal risk when no applicants are given offers
is 1, so Rj(n, x) = 1.

We condition on the relative rank t of applicant i. Now t
is uniformly distributed between 1 and i, so we get the initial
1/i factor. Next we explain the first sum. We consider all
t that would be hired by an employer ranked better than j.
This is all t ≤ HRR(i, j − 1, x) for the following reason.
By definition t = HRR(i, j − 1, x) would be hired by a
better employer than j. Then any lesser twould also be hired
because if an employer is hiring relative rank t, it clearly is
also hiring better relative ranks than t. For these t that would
be hired by a better employer than j, the minimum risk is
Rj(i,NX(i, t, j− 1, x)). Clearly we must move from i− 1
to i. We also move to status NX(i, t, x) from x because
x has gained a 1 somewhere to represent another employer
making a hire.

For the remaining t (second sum), the relative ranks such
that no better employers than j would make an offer, em-
ployer j has the choice of rejecting or hiring. If he rejects,
his risk is clearly Rj(i, x) because he moves from i − 1
to i and the hiring status is still x. If he hires, his risk is
Pr(ri > j|rri = t), the probability that the true rank of i is
worse than j given its relative rank of t. So his optimal risk
is the minimum of these choices.

Lemma 4. Rj is nondecreasing in i.

Proof. Fix x, n, and j, and i. When rri = t > HRR(i, j −
1, x), we have min{Rj(i, x),Pr(ri > j|rri = t)} ≤
Rj(i, x). When rri = t ≤ HRR(i, j − 1, x), we claim that
Rj(i,NX(i, t, j − 1, x)) ≤ Rj(i, x). The hiring status for
the left term is x′ = NX(i, t, j − 1, x). Its only difference
from the hiring status x for the right term is that exactly one
additional employer has made a hire in x′. In other words,
the employer faces strictly less competition when the hir-
ing status is x′ than x, in the sense that fewer of its offers
would be turned down in favor of offers from better-ranked
employers. Therefore, the optimal strategy for x cannot do
better than the optimal strategy for x′. Since Rj represents
the chance that an optimal strategy loses, it must be that
Rj(i, x

′) ≤ Rj(i, x). Then every term in the formula from
Lemma 3 for Rj(i− 1, x) is at most Rj(i, x).

These lemmas imply the optimal strategy.

Theorem 5. Given n applicants, a hiring status x, an em-
ployer rank j, and an applicant relative rank t ≤ j, there
is an integer Tjt(x) such that it is optimal for employer j to
make an offer to an applicant of relative rank t if and only if
the applicant arrives after position Tjt(x).

Proof. It is optimal for employer j to offer to the i-th appli-
cant with rri = t if and only if Rj(i, x) ≥ Pr(ri > j|rri =
t), meaning when the risk Rj(i, x) of rejecting the applicant
is greater than or equal to the risk Pr(ri > j|rri = t) of hir-
ing. Now Rj is nondecreasing in i and Pr(ri > j|rri = t)
is nonincreasing in i. Thus if this condition is satisfied for
some i′, then it is satisfied for all i > i′. Then we are done
by letting Tjt(x) be the position preceding the first such i,

Tjt(x) = min{i : Rj(i, x) ≥ Pr(ri > j|rri = t)} − 1.

Computing the Auxiliary Functions:
Lemma 6. HRR(i, j, x) = maxt,` t such that T`t(x) < i,
1 ≤ t ≤ ` ≤ j and x` = 0.

Proof. Interpret t as the relative rank of applicant i and ` as
the rank of an employer. Constraint 1 says that i must be
after threshold T`t(x) so that employer ` is seeking to hire
people of relative rank t. Constraint 2 says that the relative
rank t is at most ` because employer ` only ever wants rel-
ative ranks better than `. Constraint 3 says that employer `
has not hired.

Lemma 7. AE(i, t, j, x) = min` ` such that T`t(x) < i,
t ≤ ` ≤ j and x` = 0.

Proof. The argument is similar to the previous lemma.

Unfortunately, we have no closed-form description of
these strategies, and the complexity of solving for the j-th
highest ranked employer strategy is O(2jn), since to be a
best response, he must change his strategy depending pre-
cisely on which subset of higher ranked employers have
already hired someone. It is an interesting open question
whether there are other equilibria that are simpler.

6 Conclusion
We examined two extensions of the secretary problem that
added competition between employers to hire the best sec-
retaries. Optimal strategies to both problems were found
via dynamic programming. In the optimal strategies, lower-
ranked employers started hiring earlier, while higher-ranked
employers had more freedom to choose and waited longer.

Numerous interesting open questions are introduced by
altering or extending the model considered here: For ex-
ample, what if the applicants do not disappear forever, but
rather are strategic in their decision-making, holding out for
future better offers? What if employers can specify dead-
lines for the acceptance of an offer? What happens when
salaries are introduced? What do the equilibria of these more
realistic games look like?
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